Charge form factors of exotic nuclei in deformed Hartree–Fock–Bogolyubov calculations

2020 ◽  
Vol 47 (2) ◽  
pp. 025105 ◽  
Author(s):  
Lei Wang ◽  
Jian Liu ◽  
Tongqi Liang ◽  
Zhongzhou Ren ◽  
Chang Xu ◽  
...  
2015 ◽  
Vol 24 (12) ◽  
pp. 1550099 ◽  
Author(s):  
Ali A. Alzubadi ◽  
Nabeel F. Latooffi ◽  
R. A. Radhi

Mass density distributions, the associated nuclear radii and elastic electron scattering form factors of light exotic nuclei, [Formula: see text]Li, [Formula: see text]Be, [Formula: see text]Be and 8B have been calculated using shell model (SM) and Hartree–Fock (HF) methods. We consider truncated spsdpf no core SM and WBP two-body effective interaction to give the SM wave functions. The single-particle matrix elements have been calculated with Skyrme-Hartree–Fock (SHF) potential with different parametrizations. It is shown that the calculated densities and form factors are in fine agreement with experimental data. This agreement can be interpreted as the adequacy of the HF mean-field approximation for exotic nuclei.


2019 ◽  
Vol 13 (27) ◽  
pp. 1-13
Author(s):  
Sheimaa T. Aluboodi

In this paper the nuclear structure of some of Si-isotopes namely, 28,32,36,40Si have been studied by calculating the static ground state properties of these isotopes such as charge, proton, neutron and mass densities together with their associated rms radii, neutron skin thicknesses, binding energies, and charge form factors. In performing these investigations, the Skyrme-Hartree-Fock method has been used with different parameterizations; SkM*, S1, S3, SkM, and SkX. The effects of these different parameterizations on the above mentioned properties of the selected isotopes have also been studied so as to specify which of these parameterizations achieves the best agreement between calculated and experimental data. It can be deduced from this study that it is SkX parameterization that achieves such agreement. Furthermore, comparison between the theoretical and experimental results of charge form factors has been performed.


2019 ◽  
Vol 28 (03) ◽  
pp. 1950015
Author(s):  
Xiaoyong Guo ◽  
Zaijun Wang ◽  
Tianjing Li ◽  
Jian Liu

We construct a scheme to calculate the charge form factors for the elastic electron scattering. Our calculation is based on the relativistic eikonal approximation and the Skyrme–Hartree–Fock equation. To perform our calculation and benchmark the results, eight model nuclei with available experimental data: [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] are considered. For the comparison, the charge form factors calculated by the relativistic mean-field (RMF) model are also provided. Parameter set SLy5 is utilized for the Skyrme force, and the set NL3 is applied for the RMF model. It has been confirmed that combining of a nonrelativistic treatment for the target nucleus with a relativistic treatment for the incident electron may work better to reach highly descriptive and predictive results similar to the pure relativistic treatment. The results of this work are also useful for future experiments to test different inputs of densities for a specific nucleus.


2019 ◽  
Vol 13 (28) ◽  
pp. 68-81
Author(s):  
A. R. Ridha

The ground state proton, neutron and matter densities andcorresponding root mean square radii of unstable proton-rich 17Neand 27P exotic nuclei are studied via the framework of the twofrequencyshell model. The single particle harmonic oscillator wavefunctions are used in this model with two different oscillator sizeparameters core b and halo , b the former for the core (inner) orbitswhereas the latter for the halo (outer) orbits. Shell model calculationsfor core nucleons and for outer (halo) nucleons in exotic nuclei areperformed individually via the computer code OXBASH. Halostructure of 17Ne and 27P nuclei is confirmed. It is found that thestructure of 17Ne and 27P nuclei have 25 / 2 (1d ) and 1/ 2 2s -dominantconfigurations, respectively. Elastic electron scattering form factorsof these exotic nuclei are also studied using the plane wave Bornapproximation. Effects of the long tail behavior of the proton densitydistribution on the proton form factors of 17Ne and 27P areanalyzed. It is found that the difference between the proton formfactor of 17Ne and that of stable 20Ne (or of 27P and that of stable31P) comes from the difference in the proton density distribution ofthe last two protons (or of the last proton) in the two nuclei. It isconcluded that elastic electron scattering will be an efficient tool (inthe near future) to examine proton-halo phenomena of proton-richnuclei.


1979 ◽  
Vol 34 (12) ◽  
pp. 1471-1481 ◽  
Author(s):  
P. C. Schmidt ◽  
Alarich Weiss

AbstractThe atomic scattering factors for X - Rays are given for the ions Li⊕, Be2⊕, B3⊕, C4⊕, N5⊕, N3⊖, O2⊖, F⊖, Na⊕, Mg2⊕, Al3⊕, S2⊖, Cl⊖, K⊕, Ca2⊕, Sc3⊕, Ti4⊕, V5⊕, Ni, Cu⊕, Zn2⊕, Ga3⊕, Se2⊖, Br⊖, Rb⊕, Sr2⊕, Y3⊕, Pd, Ag⊕, Cd2⊕, I⊖, Cs⊕, and Ba2⊕ in the crystal. The crystal potential is simulated by a hollow charged sphere (Watson sphere model). The Hartree-Fock-Roothaan-method was used for the calculation. The crystal field affects most strongly the atomic form factors of the negative ions, especially the twofold and threefold ionized negative ions, which are unstable in the gaseous phase.


1978 ◽  
Vol 17 (3) ◽  
pp. 874-878 ◽  
Author(s):  
C. Y. Hu ◽  
S. A. Moszkowski ◽  
D. L. Shannon

Sign in / Sign up

Export Citation Format

Share Document