scholarly journals Simultaneous description of wobbling and chiral properties in even-odd triaxial nuclei

Author(s):  
C M Raduta ◽  
Apolodor A Raduta ◽  
Robert Poenaru ◽  
Alexandu Horia Raduta

Abstract A particle-triaxial rigid core Hamiltonian is semi-classically treated. The coupling term corresponds to a particle rigidly coupled to the triaxial core, along a direction that does not belong to any principal plane of the inertia ellipsoid.The equations of motion for the angular momentum components provide a sixth-order algebraic equation for one component and subsequently equations for the other two. Linearizing the equations of motion, a dispersion equation for the wobbling frequency is obtained. The equations of motion are also considered in the reduced space of generalized phase space coordinates. Choosing successively the three axes as quantization axis will lead to analytical solutions for the wobbling frequency, respectively. The same analysis is performed for the chirally transformed Hamiltonian. With an illustrative example one identified wobbling states whose frequencies are mirror image to one another. Changing the total angular momentum I, a pair of twin bands emerged. Note that the present formalism conciliates between the two signatures of triaxial nuclei, i.e., they could coexist for a single nucleus.

1998 ◽  
Vol 65 (3) ◽  
pp. 719-726 ◽  
Author(s):  
S. Djerassi

This paper is the third in a trilogy dealing with simple, nonholonomic systems which, while in motion, change their number of degrees-of-freedom (defined as the number of independent generalized speeds required to describe the motion in question). The first of the trilogy introduced the theory underlying the dynamical equations of motion of such systems. The second dealt with the evaluation of noncontributing forces and of noncontributing impulses during such motion. This paper deals with the linear momentum, angular momentum, and mechanical energy of these systems. Specifically, expressions for changes in these quantities during imposition and removal of constraints are formulated in terms of the associated changes in the generalized speeds.


1963 ◽  
Vol 41 (12) ◽  
pp. 2241-2251 ◽  
Author(s):  
M. G. Calkin

The equations of motion of an inviscid, infinitely conducting fluid in an electromagnetic field are transformed into a form suitable for an action principle. An action principle from which these equations may be derived is found. The conservation laws follow from invariance properties of the action. The space–time invariances lead to the conservation of momentum, energy, angular momentum, and center of mass, while the gauge invariances lead to conservation of mass, a generalization of the Helmholtz vortex theorem of hydrodyanmics, and the conservation of the volume integrals of A∙B and v∙B, where A is the vector potential, B is the magnetic induction, and v is the fluid velocity.


2014 ◽  
Vol 29 (29) ◽  
pp. 1450144 ◽  
Author(s):  
Yu Zhang ◽  
Jin-Ling Geng ◽  
En-Kun Li

In this paper, we study the orbital dynamics of the gravitational field of stringy black holes by analyzing the effective potential and the phase plane diagram. By solving the equation of Lagrangian, the general relativistic equations of motion in the gravitational field of stringy black holes are given. It is easy to find that the motion of test particles depends on the energy and angular momentum of the test particles. Using the phase plane analysis method and combining the conditions of the stability, we discuss different types of the test particles' orbits in the gravitational field of stringy black holes. We get the innermost stable circular orbit which occurs at r min = 5.47422 and when the angular momentum b ≤ 4.3887 the test particles will fall into the black hole.


Author(s):  
Z J Goraj

In this paper the advantages and weak points of the analytical and vectorial methods of the derivation of equations of motion for discrete systems are considered. The analytical method is discussed especially with respect to Boltzmann-Hamel equations, as generalized Lagrange equations. The vectorial method is analysed with respect to the momentum equation and to the generalized angular momentum equation about an arbitrary reference point, moving in an arbitrary manner. It is concluded that, for the systems with complicated geometry of motion and a large number of degrees of freedom, the vectorial method can be more effective than the analytical method. The combination of the analytical and vectorial methods helps to verify the equations of motion and to avoid errors, especially in the case of systems with rather complicated geometry.


Author(s):  
Myron Mathisson

The author's general variational method is applied to the case of a particle for which second moments are important but third and higher moments are negligible. Equations of motion are obtained for the angular momentum and for the centre of mass, equations (12·35) and (12·41), with arbitrary external forces X.The angular forces are then calculated for a charged particle with electric and magnetic moments moving in a general electromagnetic field, on the assumption that the effect of a certain part of the energy tensor, Tiii of (15·17), is negligible. This leads to the equations of angular motion, (17·13), from which it is inferred that, in order that the magnitude of the angular momentum may be integrable, the angular momentum, electric and magnetic moments must all be parallel in a frame of reference in which the particle is instantaneously at rest.The linear forces are then calculated for the case of no electric moment, leading to the equations for linear motion (18·10). From these it is inferred that, in order that the mass may be integrable, the ratio of the magnetic moment to the angular momentum must be constant.


1984 ◽  
Vol 62 (10) ◽  
pp. 943-947
Author(s):  
Bruce Hoeneisen

We consider particles with mass, charge, intrinsic magnetic and electric dipole moments, and intrinsic angular momentum in interaction with a classical electromagnetic field. From this action we derive the equations of motion of the position and intrinsic angular momentum of the particle including the radiation reaction, the wave equations of the fields, the current density, and the energy-momentum and angular momentum of the system. The theory is covariant with respect to the general Lorentz group, is gauge invariant, and contains no divergent integrals.


1983 ◽  
Vol 29 (1) ◽  
pp. 111-125 ◽  
Author(s):  
Robert G. Littlejohn

An elementary but rigorous derivation is given for a variational principle for guiding centre motion. The equations of motion resulting from the variational principle (the drift equations) possess exact conservation laws for phase volume, energy (for time-independent systems), and angular momentum (for azimuthally symmetric systems). The results of carrying the variational principle to higher order in the adiabatic parameter are displayed. The behaviour of guiding centre motion in azimuthally symmetric fields is discussed, and the role of angular momentum is clarified. The application of variational principles in the derivation and solution of gyrokinetic equations is discussed.


2021 ◽  
Vol 18 (1) ◽  
pp. 136
Author(s):  
V. Tanriverdi

Euler derived equations for rigid body rotations in the body reference frame and in the stationary reference frame by considering an infinitesimal part of the rigid body.Another derivation is possible, and it is widely used: transforming torque-angular momentum relation to the body reference frame.However, their equivalence is not shown explicitly.In this work, for a rigid body with different moments of inertia, we calculated Euler equations explicitly in the body reference frame and in the stationary reference frame and torque-angular momentum relation.We also calculated equations of motion from Lagrangian.These calculations show that all four of them are equivalent.


Sign in / Sign up

Export Citation Format

Share Document