Variational principles of guiding centre motion

1983 ◽  
Vol 29 (1) ◽  
pp. 111-125 ◽  
Author(s):  
Robert G. Littlejohn

An elementary but rigorous derivation is given for a variational principle for guiding centre motion. The equations of motion resulting from the variational principle (the drift equations) possess exact conservation laws for phase volume, energy (for time-independent systems), and angular momentum (for azimuthally symmetric systems). The results of carrying the variational principle to higher order in the adiabatic parameter are displayed. The behaviour of guiding centre motion in azimuthally symmetric fields is discussed, and the role of angular momentum is clarified. The application of variational principles in the derivation and solution of gyrokinetic equations is discussed.

Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter studies how the ‘spacetime symmetries’ can generate first integrals of the equations of motion which simplify their solution and also make it possible to define conserved quantities, or ‘charges’, characterizing the system. As already mentioned in the introduction to matter energy–momentum tensors in Chapter 3, the concepts of energy, momentum, and angular momentum are related to the invariance properties of the solutions of the equations of motion under spacetime translations or rotations. The chapter explores these in greater detail. It first turns to isometries and Killing vectors. The chapter then examines the first integrals of the geodesic equation, and Noether charges.


Author(s):  
Rick Salmon

In this final chapter, we return to the subject of the first: the fundamental principles of fluid mechanics. In chapter 1, we derived the equations of fluid motion from Hamilton’s principle of stationary action, emphasizing its logical simplicity and the resulting close correspondence between mechanics and thermodynamics. Now we explore the Hamiltonian approach more fully, discovering its other advantages. The most important of these advantages arise from the correspondence between the symmetry properties of the Lagrangian and the conservation laws of the resulting dynamical equations. Therefore, we begin with a very brief introduction to symmetry and conservation laws. Noether’s theorem applies to the equations that arise from variational principles like Hamilton’s principle. According to Noether’s theorem : If a variational principle is invariant to a continuous transformation of its dependent and independent variables, then the equations arising from the variational principle possess a divergence-form conservation law. The invariance property is also called a symmetry property. Thus Noether’s theorem connects symmetry properties and conservation laws. We shall neither state nor prove the general form of Noether’s theorem; to do so would require a lengthy digression on continuous groups. Instead we illustrate the connection between symmetry and conservation laws with a series of increasingly complex and important examples. These examples convey the flavor of the general theory. Our first example is very simple. Consider a body of mass m moving in one dimension. The body is attached to the end of a spring with spring-constant K. Let x(t) be the displacement of the body from its location when the spring is unstretched.


2016 ◽  
Vol 24 (2) ◽  
pp. 173-193
Author(s):  
Jana Musilová ◽  
Stanislav Hronek

Abstract As widely accepted, justified by the historical developments of physics, the background for standard formulation of postulates of physical theories leading to equations of motion, or even the form of equations of motion themselves, come from empirical experience. Equations of motion are then a starting point for obtaining specific conservation laws, as, for example, the well-known conservation laws of momenta and mechanical energy in mechanics. On the other hand, there are numerous examples of physical laws or equations of motion which can be obtained from a certain variational principle as Euler-Lagrange equations and their solutions, meaning that the \true trajectories" of the physical systems represent stationary points of the corresponding functionals.It turns out that equations of motion in most of the fundamental theories of physics (as e.g. classical mechanics, mechanics of continuous media or fluids, electrodynamics, quantum mechanics, string theory, etc.), are Euler-Lagrange equations of an appropriately formulated variational principle. There are several well established geometrical theories providing a general description of variational problems of different kinds. One of the most universal and comprehensive is the calculus of variations on fibred manifolds and their jet prolongations. Among others, it includes a complete general solution of the so-called strong inverse variational problem allowing one not only to decide whether a concrete equation of motion can be obtained from a variational principle, but also to construct a corresponding variational functional. Moreover, conservation laws can be derived from symmetries of the Lagrangian defining this functional, or directly from symmetries of the equations.In this paper we apply the variational theory on jet bundles to tackle some fundamental problems of physics, namely the questions on existence of a Lagrangian and the problem of conservation laws. The aim is to demonstrate that the methods are universal, and easily applicable to distinct physical disciplines: from classical mechanics, through special relativity, waves, classical electrodynamics, to quantum mechanics.


2017 ◽  
Vol 827 ◽  
Author(s):  
Hamid Alemi Ardakani

New variational principles are given for the two-dimensional interactions between gravity-driven water waves and a rotating and translating rectangular vessel dynamically coupled to its interior potential flow with uniform vorticity. The complete set of equations of motion for the exterior water waves, the exact nonlinear hydrodynamic equations of motion for the vessel in the roll/pitch, sway/surge and heave directions, and also the full set of equations of motion for the interior fluid of the vessel, relative to the body coordinate system attached to the rotating–translating vessel, are derived from two Lagrangian functionals.


2019 ◽  
Vol 485 (4) ◽  
pp. 428-433
Author(s):  
V. G. Baydulov ◽  
P. A. Lesovskiy

For the symmetry group of internal-wave equations, the mechanical content of invariants and symmetry transformations is determined. The performed comparison makes it possible to construct expressions for analogs of momentum, angular momentum, energy, Lorentz transformations, and other characteristics of special relativity and electro-dynamics. The expressions for the Lagrange function are defined, and the conservation laws are derived. An analogy is drawn both in the case of the absence of sources and currents in the Maxwell equations and in their presence.


Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter defines the conserved quantities associated with an isolated dynamical system, that is, the quantities which remain constant during the motion of the system. The law of momentum conservation follows directly from Newton’s third law. The superposition principle for forces allows Newton’s law of motion for a body Pa acted on by other bodies Pa′ in an inertial Cartesian frame S. The law of angular momentum conservation holds if the forces acting on the elements of the system depend only on the separation of the elements. Finally, the conservation of total energy requires in addition that the forces be derivable from a potential.


2019 ◽  
Vol 14 (S351) ◽  
pp. 524-527
Author(s):  
Maria A. Tiongco ◽  
Enrico Vesperini ◽  
Anna Lisa Varri

AbstractWe present several results of the study of the evolution of globular clusters’ internal kinematics, as driven by two-body relaxation and the interplay between internal angular momentum and the external Galactic tidal field. Via a large suite of N-body simulations, we explored the three-dimensional velocity space of tidally perturbed clusters, by characterizing their degree of velocity dispersion anisotropy and their rotational properties. These studies have shown that a cluster’s kinematical properties contain distinct imprints of the cluster’s initial structural properties, dynamical history, and tidal environment. Building on this fundamental understanding, we then studied the dynamics of multiple stellar populations in globular clusters, with attention to the largely unexplored role of angular momentum.


2010 ◽  
Vol 6 (S271) ◽  
pp. 119-126 ◽  
Author(s):  
Francoise Combes

AbstractRecent results are reviewed on galaxy dynamics, bar evolution, destruction and re-formation, cold gas accretion, gas radial flows and AGN fueling, minor mergers. Some problems of galaxy evolution are discussed in particular, exchange of angular momentum, radial migration through resonant scattering, and consequences on abundance gradients, the frequency of bulgeless galaxies, and the relative role of secular evolution and hierarchical formation.


Sign in / Sign up

Export Citation Format

Share Document