scholarly journals Searching strong ‘spin’-orbit coupled one-dimensional hole gas in strong magnetic fields

Author(s):  
Rui Li

Abstract We show that a strong `spin'-orbit coupled one-dimensional (1D) hole gas is achievable via applying a strong magnetic field to the original two-fold degenerate (spin degeneracy) hole gas confined in a cylindrical Ge nanowire. Both strong longitudinal and strong transverse magnetic fields are feasible to achieve this goal. Based on quasi-degenerate perturbation calculations, we show the induced low-energy subband dispersion of the hole gas can be written as $E=\hbar^{2}k^{2}_{z}/(2m^{*}_{h})+\alpha\sigma^{z}k_{z}+g^{*}_{h}\mu_{B}B\sigma^{x}/2$, a form exactly the same as that of the electron gas in the conduction band. Here the Pauli matrices $\sigma^{z,x}$ represent a pseudo spin (or `spin' ), because the real spin degree of freedom has been split off from the subband dispersions by the strong magnetic field. Also, for a moderate nanowire radius $R=10$ nm, the induced effective hole mass $m^{*}_{h}$ ($0.065\sim0.08~m_{e}$) and the `spin'-orbit coupling $\alpha$ ($0.35\sim0.8$ eV~\AA) have a small magnetic field dependence in the studied magnetic field interval $1<B<15$ T, while the effective $g$-factor $g^{*}_{h}$ of the hole `spin' only has a small magnetic field dependence in the large field region.

1980 ◽  
Vol 35 (11) ◽  
pp. 1271-1272 ◽  
Author(s):  
W. Henke ◽  
H. L. Selzle ◽  
T. R. Hays ◽  
E. W. Schlag

Abstract The effect of an external magnetic field on the decay of an excited single rotational state of the 1Au electronic state of biacetyl is observed in a hypersonic jet experiment after narrow bandwidth laser excitation. The lifetime of the ex-cited state decreases already at low magnetic fields and the molecular quantum beat vanishes.


2020 ◽  
Vol 6 (3) ◽  
pp. 43
Author(s):  
Iwao Mogi ◽  
Ryoichi Aogaki ◽  
Kohki Takahashi

The magnetic field dependence of chiral surface formation was investigated in magnetoelectrodeposition (MED) and magnetoelectrochemical etching (MEE) of copper films. The MED and MEE was conducted in magnetic fields of up to 5 T, which were parallel or antiparallel to the ionic currents. The MED films prepared in high magnetic fields of 5 and 3 T exhibited odd chirality for magnetic field polarity, as expected on the basis of the magnetohydrodynamic (MHD) vortex model. However, the films prepared in the lower fields of 2.5 and 2 T exhibited breaking of odd chirality. Similar magnetic field dependence was observed in the surface chirality of MEE films. These results imply that the fluctuation in the self-organized state of micro-MHD vortices is responsible for the breaking of odd chirality.


2007 ◽  
Vol 75 (8) ◽  
Author(s):  
Juan I. Climente ◽  
Andrea Bertoni ◽  
Guido Goldoni ◽  
Massimo Rontani ◽  
Elisa Molinari

2018 ◽  
Vol 175 ◽  
pp. 13005 ◽  
Author(s):  
Gunnar S. Bali ◽  
Bastian B. Brandt ◽  
Gergely Endrődi ◽  
Benjamin Gläße

The leptonic decay of the charged pion in the presence of background magnetic fields is investigated using quenched Wilson fermions. It is demonstrated that the magnetic field opens up a new channel for this decay. The magnetic field-dependence of the decay constants for both the ordinary and the new channel is determined. Using these inputs from QCD, we calculate the total decay rate perturbatively.


1990 ◽  
Vol 56 (13) ◽  
pp. 1284-1286 ◽  
Author(s):  
Uri Dai ◽  
Guy Deutscher ◽  
Claude Lacour ◽  
Francine Laher‐Lacour ◽  
Philippe Mocaër ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document