Flexible devices fabricated by a plate-to-roll nanoimprint lithography system

2018 ◽  
Vol 30 (7) ◽  
pp. 075301 ◽  
Author(s):  
Kai Xu ◽  
Huiwen Luo ◽  
Jin Qin ◽  
Muyi Yang ◽  
Songpo Guo ◽  
...  
Author(s):  
Liu Chaoran ◽  
Yue Jinzhao ◽  
Li Tianhao ◽  
Xia Weiwei ◽  
Li Dongxue ◽  
...  

Nanoimprint lithography has a great development in decades. Compressional gas cushion press is a novel method in improving the uniformity in nanoimprint lithography process. Based on compressional gas cushion press nanoimprint lithography system, an attenuation ring is added between the chamber wall and the pedestal. The attenuation ring decreases the influence of system vibration on the fidelity of patterning. The physical parameters of the attenuation material are optimized based on the theoretical models of the vibration attenuation and mechanical calculation. According to the optimization physical parameters, Young's modulus of a perfect material of attenuation ring should be smaller than 8 MPa, and Poisson's ratio should be close to 0.5. Therefore, natural rubber is employed as the material of attenuation ring. The simulation results based on COMSOL indicate that nested rectangular structure has the best attenuation effect among the four simulated internal structures. It provides technological supporting for the establishment of attenuation ring in compressional gas cushion press nanoimprint lithography system.


2021 ◽  
pp. 111587
Author(s):  
Hojung Kang ◽  
Eunseo Choi ◽  
Jaemin Park ◽  
Young Hoon Sung ◽  
Kwan Kim ◽  
...  

2020 ◽  
Vol 16 ◽  
Author(s):  
Muhammad Bilal Tahir ◽  
Aleena Shoukat ◽  
Tahir Iqbal ◽  
Asma Ayub ◽  
Saff-e Awal ◽  
...  

: The field of nanosensors has been gaining a lot of attention due to its properties such as mechanical and electrical ever since its first discovery by Dr. Wolter and first mechanical sensor in 1994. The rapidly growing demand of nanosensors has become profitable for a multidisciplinary approach in designing and fabrication of materials and strategies for potential applications. Frequent stimulating advancements are being suggested and established in recent years and thus heading towards multiple applications including food safety, healthcare, environmental monitoring, and biomedical research. Nanofabrication being an efficient method has been used in different industries like medical pharmaceutical for their complex functional geometry at a lower scale. These nanofabrications apply through different methods. There are five most commonly known methods which are frequently used, including top-down lithography, molecular self-assembly, bottom-up assembly, heat and pull method for fabrication of biosensors, etching for fabrication of nanosensors etc. Nanofabrication help at the nanoscale to design and work with small models. But these models due to their small size and being sensitive need more care for use as well as more training and experience to do work with. All methods used for nanofabrication are good and helpful. But more preferred is molecular self-assembly as it is helpful in mass production. Nanofabrication has become an emerging and developing field and it assumed that in near future our world is known by the new devices of nanofabrication.


Sign in / Sign up

Export Citation Format

Share Document