Non-volatile multi-level cell storage via sequential phase transition in Sb7Te3/GeSb6Te multilayer thin film

2021 ◽  
Author(s):  
Zhehao Xu ◽  
Xiao Su ◽  
Sicong Hua ◽  
Jiwei Zhai ◽  
Sannian Song ◽  
...  

Abstract For high-performance data centers, huge data transfer, reliable data storage and emerging in-memory computing require memory technology with the combination of accelerated access, large capacity and persistence. As for phase-change memory, the Sb-rich compounds Sb7Te3 and GeSb6Te have demonstrated fast switching speed and considerable difference of phase transition temperature. A multilayer structure is built up with the two compounds to reach three non-volatile resistance states. Sequential phase transition in a relationship with the temperature is confirmed to contribute to different resistance states with sufficient thermal stability. With the verification of nanoscale confinement for the integration of Sb7Te3/GeSb6Te multilayer thin film, T-shape PCM cells are fabricated and two SET operations are executed with 40 ns-width pulses, exhibiting good potential for the multi-level PCM candidate.

BMC Genomics ◽  
2019 ◽  
Vol 20 (S11) ◽  
Author(s):  
Shuai Zeng ◽  
Zhen Lyu ◽  
Siva Ratna Kumari Narisetti ◽  
Dong Xu ◽  
Trupti Joshi

Abstract Background Knowledge Base Commons (KBCommons) v1.1 is a universal and all-inclusive web-based framework providing generic functionalities for storing, sharing, analyzing, exploring, integrating and visualizing multiple organisms’ genomics and integrative omics data. KBCommons is designed and developed to integrate diverse multi-level omics data and to support biological discoveries for all species via a common platform. Methods KBCommons has four modules including data storage, data processing, data accessing, and web interface for data management and retrieval. It provides a comprehensive framework for new plant-specific, animal-specific, virus-specific, bacteria-specific or human disease-specific knowledge base (KB) creation, for adding new genome versions and additional multi-omics data to existing KBs, and for exploring existing datasets within current KBs. Results KBCommons has an array of tools for data visualization and data analytics such as multiple gene/metabolite search, gene family/Pfam/Panther function annotation search, miRNA/metabolite/trait/SNP search, differential gene expression analysis, and bulk data download capacity. It contains a highly reliable data privilege management system to make users’ data publicly available easily and to share private or pre-publication data with members in their collaborative groups safely and securely. It allows users to conduct data analysis using our in-house developed workflow functionalities that are linked to XSEDE high performance computing resources. Using KBCommons’ intuitive web interface, users can easily retrieve genomic data, multi-omics data and analysis results from workflow according to their requirements and interests. Conclusions KBCommons addresses the needs of many diverse research communities to have a comprehensive multi-level OMICS web resource for data retrieval, sharing, analysis and visualization. KBCommons can be publicly accessed through a dedicated link for all organisms at http://kbcommons.org/.


2005 ◽  
Author(s):  
M. Lauters ◽  
B. McCarthy ◽  
D. Sarid ◽  
G. E. Jabbour

2017 ◽  
Vol 10 (3) ◽  
pp. 597-602
Author(s):  
Jyotindra Tiwari ◽  
Dr. Mahesh Pawar ◽  
Dr. Anjajana Pandey

Big Data is defined by 3Vs which stands for variety, volume and velocity. The volume of data is very huge, data exists in variety of file types and data grows very rapidly. Big data storage and processing has always been a big issue. Big data has become even more challenging to handle these days. To handle big data high performance techniques have been introduced. Several frameworks like Apache Hadoop has been introduced to process big data. Apache Hadoop provides map/reduce to process big data. But this map/reduce can be further accelerated. In this paper a survey has been performed for map/reduce acceleration and energy efficient computation in quick time.


Author(s):  
Kyle Chard ◽  
Eli Dart ◽  
Ian Foster ◽  
David Shifflett ◽  
Steven Tuecke ◽  
...  

We describe best practices for providing convenient, high-speed, secure access to large data via research data portals. We capture these best practices in a new design pattern, the Modern Research Data Portal, that disaggregates the traditional monolithic web-based data portal to achieve orders-of-magnitude increases in data transfer performance, support new deployment architectures that decouple control logic from data storage, and reduce development and operations costs. We introduce the design pattern; explain how it leverages high-performance Science DMZs and cloud-based data management services; review representative examples at research laboratories and universities, including both experimental facilities and supercomputer sites; describe how to leverage Python APIs for authentication, authorization, data transfer, and data sharing; and use coding examples to demonstrate how these APIs can be used to implement a range of research data portal capabilities. Sample code at a companion web site, https://docs.globus.org/mrdp, provides application skeletons that readers can adapt to realize their own research data portals.


2001 ◽  
Vol 24 (3) ◽  
pp. 510-519 ◽  
Author(s):  
G. Carchon ◽  
K. Vaesen ◽  
S. Brebels ◽  
W. De Raedt ◽  
E. Beyne ◽  
...  

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Jian Zhou ◽  
Shunhong Zhang

AbstractDisplacive martensitic phase transition is potentially promising in semiconductor-based data storage applications with fast switching speed. In addition to traditional phase transition materials, the recently discovered two-dimensional ferroic materials are receiving a lot of attention owing to their fast ferroic switching dynamics, which could tremendously boost data storage density and enhance read/write speed. In this study, we propose that a terahertz laser with an intermediate intensity and selected frequency can trigger ferroic order switching in two-dimensional multiferroics, which is a damage-free noncontacting approach. Through first-principles calculations, we theoretically and computationally investigate optically induced electronic, phononic, and mechanical responses of two experimentally fabricated multiferroic (with both ferroelastic and ferroelectric) materials, β-GeSe and α-SnTe monolayer. We show that the relative stability of different orientation variants can be effectively manipulated via the polarization direction of the terahertz laser, which is selectively and strongly coupled with the transverse optical phonon modes. The transition from one orientation variant to another can be barrierless, indicating ultrafast transition kinetics and the conventional nucleation-growth phase transition process can be avoidable.


2017 ◽  
Author(s):  
Kyle Chard ◽  
Eli Dart ◽  
Ian Foster ◽  
David Shifflett ◽  
Steven Tuecke ◽  
...  

We describe best practices for providing convenient, high-speed, secure access to large data via research data portals. We capture these best practices in a new design pattern, the Modern Research Data Portal, that disaggregates the traditional monolithic web-based data portal to achieve orders-of-magnitude increases in data transfer performance, support new deployment architectures that decouple control logic from data storage, and reduce development and operations costs. We introduce the design pattern; explain how it leverages high-performance Science DMZs and cloud-based data management services; review representative examples at research laboratories and universities, including both experimental facilities and supercomputer sites; describe how to leverage Python APIs for authentication, authorization, data transfer, and data sharing; and use coding examples to demonstrate how these APIs can be used to implement a range of research data portal capabilities. Sample code at a companion web site, https://docs.globus.org/mrdp, provides application skeletons that readers can adapt to realize their own research data portals.


2017 ◽  
Author(s):  
Kyle Chard ◽  
Eli Dart ◽  
Ian Foster ◽  
David Shifflett ◽  
Steven Tuecke ◽  
...  

We describe best practices for providing convenient, high-speed, secure access to large data via research data portals. We capture these best practices in a new design pattern, the Modern Research Data Portal, that disaggregates the traditional monolithic web-based data portal to achieve orders-of-magnitude increases in data transfer performance, support new deployment architectures that decouple control logic from data storage, and reduce development and operations costs. We introduce the design pattern; explain how it leverages high-performance Science DMZs and cloud-based data management services; review representative examples at research laboratories and universities, including both experimental facilities and supercomputer sites; describe how to leverage Python APIs for authentication, authorization, data transfer, and data sharing; and use coding examples to demonstrate how these APIs can be used to implement a range of research data portal capabilities. Sample code at a companion web site, https://docs.globus.org/mrdp, provides application skeletons that readers can adapt to realize their own research data portals.


MRS Bulletin ◽  
2006 ◽  
Vol 31 (4) ◽  
pp. 324-328 ◽  
Author(s):  
Lisa Dhar

AbstractHolographic storage is considered a promising successor to currently available optical storage technologies. Enabling significant gains in both data transfer rates and storage densities, holographic storage and its capabilities have gained a great deal of recent attention.One of the primary challenges in the advancement of holographic storage has been the development of suitable recording materials.In this article, we provide a brief introduction to holographic storage and its potential advantages over current technologies, outline the requirements for recording materials, and survey candidate materials.We end by highlighting recent progress in photopolymer materials that has produced materials that satisfy the requirements for holographic storage and have enabled significant demonstrations of the viability of this technology.


Sign in / Sign up

Export Citation Format

Share Document