Effects of frequency on bubble-cloud behavior and ablation efficiency in intrinsic threshold histotripsy

Author(s):  
Connor Edsall ◽  
Emerson Ham ◽  
Hal Holmes ◽  
Timothy L Hall ◽  
Eli Vlaisavljevich
2012 ◽  
Vol 132 (8) ◽  
pp. 656-663 ◽  
Author(s):  
Satoshi Ihara ◽  
Taiki Hirohata ◽  
Yuichi Kominato ◽  
Chobei Yamabe ◽  
Hideaki Ike ◽  
...  

Fluids ◽  
2021 ◽  
Vol 6 (6) ◽  
pp. 215
Author(s):  
Paul McGinn ◽  
Daniel Pearce ◽  
Yannis Hardalupas ◽  
Alex Taylor ◽  
Konstantina Vogiatzaki

This paper provides new physical insight into the coupling between flow dynamics and cavitation bubble cloud behaviour at conditions relevant to both cavitation inception and the more complex phenomenon of flow “choking” using a multiphase compressible framework. Understanding the cavitation bubble cloud process and the parameters that determine its break-off frequency is important for control of phenomena such as structure vibration and erosion. Initially, the role of the pressure waves in the flow development is investigated. We highlight the differences between “physical” and “artificial” numerical waves by comparing cases with different boundary and differencing schemes. We analyse in detail the prediction of the coupling of flow and cavitation dynamics in a micro-channel 20 m high containing Diesel at pressure differences 7 MPa and 8.5 MPa, corresponding to cavitation inception and "choking" conditions respectively. The results have a very good agreement with experimental data and demonstrate that pressure wave dynamics, rather than the “re-entrant jet dynamics” suggested by previous studies, determine the characteristics of the bubble cloud dynamics under “choking” conditions.


2021 ◽  
Vol 33 (5) ◽  
pp. 053304
Author(s):  
S. Zoghlami ◽  
C. Béguin ◽  
A. Teyssedou ◽  
D. Scott ◽  
L. Bornard ◽  
...  
Keyword(s):  

2011 ◽  
Vol 680 ◽  
pp. 114-149 ◽  
Author(s):  
ZORANA ZERAVCIC ◽  
DETLEF LOHSE ◽  
WIM VAN SAARLOOS

In this paper the collective oscillations of a bubble cloud in an acoustic field are theoretically analysed with concepts and techniques of condensed matter physics. More specifically, we will calculate the eigenmodes and their excitabilities, eigenfrequencies, densities of states, responses, absorption and participation ratios to better understand the collective dynamics of coupled bubbles and address the question of possible localization of acoustic energy in the bubble cloud. The radial oscillations of the individual bubbles in the acoustic field are described by coupled linearized Rayleigh–Plesset equations. We explore the effects of viscous damping, distance between bubbles, polydispersity, geometric disorder, size of the bubbles and size of the cloud. For large enough clusters, the collective response is often very different from that of a typical mode, as the frequency response of each mode is sufficiently wide that many modes are excited when the cloud is driven by ultrasound. The reason is the strong effect of viscosity on the collective mode response, which is surprising, as viscous damping effects are small for single-bubble oscillations in water. Localization of acoustic energy is only found in the case of substantial bubble size polydispersity or geometric disorder. The lack of localization for a weak disorder is traced back to the long-range 1/r interaction potential between the individual bubbles. The results of the present paper are connected to recent experimental observations of collective bubble oscillations in a two-dimensional bubble cloud, where pronounced edge states and a pronounced low-frequency response had been observed, both consistent with the present theoretical findings. Finally, an outlook to future possible experiments is given.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Eric Audouard ◽  
Guillaume Bonamis ◽  
Clemens Hönninger ◽  
Eric Mottay

Abstract Bursts of GHz repetition rate pulses can significantly improve the ablation efficiency of femtosecond lasers. Depending on the process conditions, thermal mechanisms can be promoted and controlled. GHz ablation therefore combines thermal and non-thermal ablation mechanisms. With an optimal choice of the burst duration, the non-thermal ablation can be highly enhanced by a heating phase due to the first pulses in the burst. The GHz burst mode can be considered as a key function for the “agility” of new high-power lasers.


2021 ◽  
Vol 150 (4) ◽  
pp. A29-A29
Author(s):  
Aarushi Bhargava ◽  
Shaoling Huang ◽  
David D. McPherson ◽  
Kenneth B. Bader

Author(s):  
Ken Uchida ◽  
Seijiro Suzuki

This paper presents a numerical and qualitative study on the expected hydrodynamic load-reducing effect of bubbly media near a volumetrically oscillating bubble. In this study, the bubble or bubble cloud is assumed to be spherically symmetric, and its motion is analyzed as a one-dimensional compressible two-phase flow in the radial direction in spherical coordinates. We adopted the CCUP (CIP-Combined Unified Procedure) method, which is a unified analysis method for both compressible and incompressible fluids proposed by Yabe et al. (1991) in order to treat interaction among gas, liquid, and two-phase media, and to avoid large numerical dissipation at density discontinuities. To verify the analysis program we developed, we analyzed free oscillations of a bubble with a unity void fraction and of a bubble cloud with an initial void fraction of 0.5, and found that the natural frequency from numerical results are well reproduced with an error of 0.9% for the bubble and 5% for the bubble cloud as compared to those obtained on a theoretical basis. Using this method, we analyzed the free oscillation of a bubble cloud in which a bubble with a unity void fraction is covered by a bubbly media layer with an initial void fraction of 0.5. Numerical results show that the amplitude of pressure oscillation inside the bubble is about halved, and that a higher mode of oscillation appears when a bubbly media layer covers the bubble. The measured results from a blowdown test we previously reported also shows a similar higher mode of oscillation. The amplitude of pressure oscillation in the water region was apparently reduced when a thick bubbly media layer covers the bubble. Thus, if the bubbly media is ejected from sparger holes prior to the ejection of a high-pressure bubble, the bubbly media might reduce the hydrodynamic load induced in a water pool made by volumetric oscillation of the bubble.


2018 ◽  
Vol 50 (6) ◽  
pp. 065512 ◽  
Author(s):  
Toshiyuki Ogasawara ◽  
Taisei Horiba ◽  
Taisuke Sano ◽  
Hiroyuki Takahira

Sign in / Sign up

Export Citation Format

Share Document