Bubble cloud configuration effect on the added mass

2021 ◽  
Vol 33 (5) ◽  
pp. 053304
Author(s):  
S. Zoghlami ◽  
C. Béguin ◽  
A. Teyssedou ◽  
D. Scott ◽  
L. Bornard ◽  
...  
Keyword(s):  
2019 ◽  
Author(s):  
SARRA ZOGHLAMI ◽  
CÉDRIC BÉGUIN ◽  
STÉPHANE ÉTIENNE ◽  
ALBERTO TEYSSEDOU ◽  
DAVID SCOTT ◽  
...  
Keyword(s):  

2012 ◽  
Vol 132 (8) ◽  
pp. 656-663 ◽  
Author(s):  
Satoshi Ihara ◽  
Taiki Hirohata ◽  
Yuichi Kominato ◽  
Chobei Yamabe ◽  
Hideaki Ike ◽  
...  

1963 ◽  
Vol 10 (103) ◽  
pp. 73-84 ◽  
Author(s):  
J. Gerritsma ◽  
W. Beukelman
Keyword(s):  

Fluids ◽  
2021 ◽  
Vol 6 (6) ◽  
pp. 215
Author(s):  
Paul McGinn ◽  
Daniel Pearce ◽  
Yannis Hardalupas ◽  
Alex Taylor ◽  
Konstantina Vogiatzaki

This paper provides new physical insight into the coupling between flow dynamics and cavitation bubble cloud behaviour at conditions relevant to both cavitation inception and the more complex phenomenon of flow “choking” using a multiphase compressible framework. Understanding the cavitation bubble cloud process and the parameters that determine its break-off frequency is important for control of phenomena such as structure vibration and erosion. Initially, the role of the pressure waves in the flow development is investigated. We highlight the differences between “physical” and “artificial” numerical waves by comparing cases with different boundary and differencing schemes. We analyse in detail the prediction of the coupling of flow and cavitation dynamics in a micro-channel 20 m high containing Diesel at pressure differences 7 MPa and 8.5 MPa, corresponding to cavitation inception and "choking" conditions respectively. The results have a very good agreement with experimental data and demonstrate that pressure wave dynamics, rather than the “re-entrant jet dynamics” suggested by previous studies, determine the characteristics of the bubble cloud dynamics under “choking” conditions.


2021 ◽  
Vol 918 ◽  
Author(s):  
D. Paniccia ◽  
G. Graziani ◽  
C. Lugni ◽  
R. Piva

Abstract


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 822
Author(s):  
Yury Stepanyants ◽  
Izolda Sturova

This paper presents the calculation of the hydrodynamic forces exerted on an oscillating circular cylinder when it moves perpendicular to its axis in infinitely deep water covered by compressed ice. The cylinder can oscillate both horizontally and vertically in the course of its translational motion. In the linear approximation, a solution is found for the steady wave motion generated by the cylinder within the hydrodynamic set of equations for the incompressible ideal fluid. It is shown that, depending on the rate of ice compression, both normal and anomalous dispersion can occur in the system. In the latter case, the group velocity can be opposite to the phase velocity in a certain range of wavenumbers. The dependences of the hydrodynamic loads exerted on the cylinder (the added mass, damping coefficients, wave resistance and lift force) on the translational velocity and frequency of oscillation were studied. It was shown that there is a possibility of the appearance of negative values for the damping coefficients at the relatively big cylinder velocity; then, the wave resistance decreases with the increase in cylinder velocity. The theoretical results were underpinned by the numerical calculations for the real parameters of ice and cylinder motion.


Author(s):  
Daogang Lu ◽  
Yu Liu ◽  
Shu Zheng

Free standing spent fuel storage racks are submerged in water contained with spent fuel pool. During a postulated earthquake, the water surrounding the racks is accelerated and the so-called fluid-structure interaction (FSI) is significantly induced between water, racks and the pool walls[1]. The added mass is an important input parameter for the dynamic structural analysis of the spent fuel storage rack under earthquake[2]. The spent fuel storage rack is different even for the same vendors. Some rack are designed as the honeycomb construction, others are designed as the end-tube-connection construction. Therefore, the added mass for those racks have to be measured for the new rack’s design. More importantly, the added mass is influenced by the layout of the rack in the spent fuel pool. In this paper, an experiment is carried out to measure the added mass by free vibration test. The measured fluid force of the rack is analyzed by Fourier analysis to derive its vibration frequency. The added mass is then evaluated by the vibration frequency in the air and water. Moreover, a two dimensional CFD model of the spent fuel rack immersed in the water tank is built. The fluid force is obtained by a transient analysis with the help of dynamics mesh method.


Author(s):  
Arild Ludvigsen ◽  
Zhi Yuan Pan ◽  
Peng Gou ◽  
Torgeir Vada

The linear boundary value problem for the wave dynamics inside a tank is very similar to the solution for the outer hull. Because of this, the boundary value solver for the outer hull can be re-used for the tank. The oscillating hydrostatic pressure in the tank may also be calculated in the same way as for the outer hull. Thereby, the hydrostatic coefficients from the tank can also be obtained from the outer solution. This makes it, in principle, easy to adapt outer solution computer code to also account for the inner solutions for all the tanks. The procedure is discussed by Newman (2005). We have used it in a different way, isolating the tank solution into more flexible independent sub-runs. This approach provides part-results for the tanks, like added mass and restoring from the tanks. It also has numerical benefits, with the possibility to reuse the calculations for tanks of equal geometrical shape. We have also extended the procedure to account for full tanks without waves and restoring effects. The linear tank fluid dynamics is programmed into a quite general hydrodynamic frequency domain solver, with the possibility of automatic transferring of local loads to structural (FEM) analysis. Results for local loads are presented. A simpler method of quasi-static loading in tanks is discussed, with comparison to the present method. Effects on global motions and local pressure coming from the tank dynamics contributions are pointed out, such as the shifted resonance of the vessel and the added mass which differs from rigid masses of the tanks.


2011 ◽  
Vol 680 ◽  
pp. 114-149 ◽  
Author(s):  
ZORANA ZERAVCIC ◽  
DETLEF LOHSE ◽  
WIM VAN SAARLOOS

In this paper the collective oscillations of a bubble cloud in an acoustic field are theoretically analysed with concepts and techniques of condensed matter physics. More specifically, we will calculate the eigenmodes and their excitabilities, eigenfrequencies, densities of states, responses, absorption and participation ratios to better understand the collective dynamics of coupled bubbles and address the question of possible localization of acoustic energy in the bubble cloud. The radial oscillations of the individual bubbles in the acoustic field are described by coupled linearized Rayleigh–Plesset equations. We explore the effects of viscous damping, distance between bubbles, polydispersity, geometric disorder, size of the bubbles and size of the cloud. For large enough clusters, the collective response is often very different from that of a typical mode, as the frequency response of each mode is sufficiently wide that many modes are excited when the cloud is driven by ultrasound. The reason is the strong effect of viscosity on the collective mode response, which is surprising, as viscous damping effects are small for single-bubble oscillations in water. Localization of acoustic energy is only found in the case of substantial bubble size polydispersity or geometric disorder. The lack of localization for a weak disorder is traced back to the long-range 1/r interaction potential between the individual bubbles. The results of the present paper are connected to recent experimental observations of collective bubble oscillations in a two-dimensional bubble cloud, where pronounced edge states and a pronounced low-frequency response had been observed, both consistent with the present theoretical findings. Finally, an outlook to future possible experiments is given.


Sign in / Sign up

Export Citation Format

Share Document