Active vibration control for piezoelectricity cantilever beam: an adaptive feedforward control method

2017 ◽  
Vol 26 (4) ◽  
pp. 047003 ◽  
Author(s):  
Qiao Zhu ◽  
Jun-Zhou Yue ◽  
Wei-Qun Liu ◽  
Xu-Dong Wang ◽  
Jun Chen ◽  
...  
2021 ◽  
pp. 107754632110374
Author(s):  
Shuo Chen ◽  
Xin Huo ◽  
Hui Zhao ◽  
Yu Yao

This article proposes an active vibration control method for the GyroWheel to ensure the attitude stability precision of the spacecraft. The method includes sliding mode disturbance observer and adaptive feedforward compensator. First, considering the disturbance torque caused by rotor imbalance, the dynamic equation adopting complex coefficients is derived with synchronous disturbances. To reduce the influence of model parameter perturbation, a finite time sliding mode observer is designed to estimate the rotor imbalance owing to its robustness. An integrator for the switching term is introduced in the sliding manifold, which attenuates the chattering phenomenon. Then, the observed unbalanced torque is utilized to generate the reference compensation tilting angle, which is fedforward to the command value to offset the synchronous frequency current. A variable step size seeking algorithm is adopted to tune the feedforward compensator gain adaptively. Finally, both numerical simulations and experiments have verified the effectiveness of the active vibration control scheme, achieving clean vibration torque.


Author(s):  
Lawrence R. Corr ◽  
William W. Clark

Abstract This paper presents a numerical study in which active and hybrid vibration confinement is compared with a conventional active vibration control method. Vibration confinement is a vibration control technique that is based on reshaping structural modes to produce “quiet areas” in a structure as opposed to adding damping as in conventional active or passive methods. In this paper, active and hybrid confinement is achieved in a flexible beam with two pairs of piezoelectric actuators and sensors and with two vibration absorbers. For comparison purposes, active damping is achieved also with two pairs of piezoelectric actuators and sensors using direct velocity feedback. The results show that both approaches are effective in controlling vibrations in the targeted area of the beam, with direct velocity feedback being slightly more cost effective in terms of required power. When combined with passive confinement, however, each method is improved with a significant reduction in required power.


Sign in / Sign up

Export Citation Format

Share Document