scholarly journals Boundary element modelling of ultrasonic Lamb waves for structural health monitoring

2020 ◽  
Vol 29 (10) ◽  
pp. 105030
Author(s):  
Jun Li ◽  
Zahra Sharif Khodaei ◽  
M H Aliabadi
Author(s):  
Michelangelo Maria Malatesta ◽  
Denis Bogomolov ◽  
Marco Messina ◽  
Dennis D’Ippolito ◽  
Nicola Testoni ◽  
...  

2019 ◽  
Vol 30 (18-19) ◽  
pp. 2919-2931 ◽  
Author(s):  
Ali Nokhbatolfoghahai ◽  
Hossein M Navazi ◽  
Roger M Groves

To perform active structural health monitoring, guided Lamb waves for damage detection have recently gained extensive attention. Many algorithms are used for damage detection with guided waves and among them, the delay-and-sum method is the most commonly used algorithm because of its robustness and simplicity. However, delay-and-sum images tend to have poor accuracy with a large spot size and a high noise floor, especially in the presence of multiple damages. To overcome these problems, another method that is based on sparse reconstruction can be used. Although the images produced by the sparse reconstruction method are superior to the conventional delay-and-sum method, it has the challenges of the time and cost of computations in comparison with the delay-and-sum method. Also, in some cases in multi-damage detection, the sparse reconstruction method totally fails. In this article, using prior support information of the structure achieved by the delay-and-sum method, a hybrid method based on sparse reconstruction method is proposed to improve the computational performance and robustness of sparse reconstruction method in the case of multi-damage presence. The effectiveness of the proposed method in detecting damages is demonstrated experimentally and numerically on a simple aluminum plate. The technique is also shown to accurately identify and localize multi-site damages as well as single damage with low sampled signals.


2011 ◽  
Vol 368-373 ◽  
pp. 2402-2405
Author(s):  
Nai Zhi Zhao ◽  
Chang Tie Huang ◽  
Xin Chen

Many of the wave propagation based structural health monitoring techniques rely on some knowledge of the structure in a healthy state in order to identify damage. Baseline measurements are recorded when a structure is pristine and are stored for comparison to future data. A concern with the use of baseline subtraction methods is the ability to discern structural changes from the effects of varying environmental and operational conditions when analyzing the vibration response of a system. The use of a standard baseline subtraction technique may falsely indicate damage when environmental or operational variations are present between baseline measurements and new measurements. A procedure was outlined for the method, including excitation and recording of Lamb waves, and the use of damage detection algorithms. In this paper, several tests are performed and the results are used to help develop the damage detection algorithms previously described, and to evaluate the performance of the instantaneous baseline SHM technique. Analytical testing is first performed by feeding known input signals into each damage detection algorithm and analyzing the output data. The results of the analytical testing are used to help develop the damage detection algorithms.


2012 ◽  
Vol 538-541 ◽  
pp. 1634-1639 ◽  
Author(s):  
Andrea Alaimo ◽  
Alberto Milazzo ◽  
Calogero Orlando

In this paper a 2D boundary element model is used to characterize the transient response of a piezoelectric based structural health monitoring system for cracked beam. The BE model is written for piezoelectric non-homogeneous problem employing generalized displacements. The dual reciprocity method is used to write the mass matrix in terms of boundary parameters only. The multidomain boundary element technique is implemented to model non-homogeneous and cracked configuration, unilateral interface conditions are also considered to prevent the physical inconsistence of the overlapping between interface nodes belonging to the crack surfaces. To assess the reliability and the effectiveness of the model numerical analyses are carried out on the modal and dynamic response of undamaged beam and results are compared with finite element calculations. Electrical response of piezoelectric sensors are then reported for different crack configurations in comparison with the undamaged case.


2014 ◽  
Vol 2014 (6) ◽  
pp. 21-28 ◽  
Author(s):  
Aleksander Kural

Abstract This article is based on research done during the author’s PhD at Cardiff University, UK. A prototype of a novel wireless energy transmission system aimed at the use with wireless aircraft structural health monitoring (SHM) sensor nodes is described. The system uses ultrasonic guided plate waves (Lamb waves) to transmit energy along an aluminium plate, similar to those used in aircraft structures. Three types of piezoelectric transducers generating and receiving the ultrasonic vibration were compared. The Smart Material MFC M8528-P1 was found to achieve the best performance, allowing the transmission of 17 mW across a 54 cm distance, while being driven with a 20 V signal. Laser vibrometer imaging and LISA software simulation of the Lamb wave propagation in the experimental plate were also performed. Based on these, ideas for a further development of the system were proposed.


Sign in / Sign up

Export Citation Format

Share Document