Position/force modeling and analysis of a piezo-driven compliant micro-gripper considering the dynamic impacts of gripping objects

Author(s):  
Jiawei Qian ◽  
Peng Yan ◽  
Pengbo Liu
2011 ◽  
Vol 143-144 ◽  
pp. 148-153 ◽  
Author(s):  
Xiao Zhuo Xu ◽  
Xu Dong Wang ◽  
Hai Chao Feng ◽  
Ji Kai Si

This paper investigates the detent force modeling of a slotted iron core type vertical permanent magnet linear synchronous motor (PMLSM) for ropeless elevator applications. Variable network non-linear magnetic equivalent circuit model is established to predict the detent force of PMLSM. The topology structure of equivalent magnetic circuit is developed and the permeances are derived and calculated. The end effect of two end teeth is essential for analysis of detent force and it is focused in the modeling. Magnetic saturation of primary iron-core also be taken into account. In final some 3-D finite-element numerical calculation results are used to validate the feasibility of the proposed method.


2020 ◽  
Vol 66 ◽  
pp. 188-200
Author(s):  
MuBang Xiao ◽  
Ye Ding ◽  
Zaojun Fang ◽  
Guilin Yang

2007 ◽  
Vol 344 ◽  
pp. 419-426 ◽  
Author(s):  
Branimir Barisic ◽  
Miljenko Dino Math ◽  
Branko Grizelj

In order to determine the forming force in deep drawing and backward extrusion processes (on Al 99.5F7 specimens) the analytical, numerical and stochastic modeling and analysis of forming force on the basis of the Box-Wilson’s multi factorial experimental designs by use of rotatable experimental design were carried out. The goal of the paper is to predict the force in these different forming processes giving identical parts by means of different modeling approaches. This study will seek to compare the results of these modeling solutions with experimental results serving to check the correction and the verification of analytic, stochastic and numerically obtained results. Also, the scope of the present paper is to evaluate different parameters affecting these processes and to examine some experimental procedures in laboratory scale for the listed material in order to give more useful information in numerical and stochastic computations and also, to define the correlation among the parameters of these processes in order to improve the existing one and to raise it to a higher techno economic level. The increasing tendency for industrial parts cost reduction, quality improvement, materials savings, and the shortening of design and manufacturing time is more focused on this way of analysis of processes. These investigations are a basis for general conclusions about the forming force and they have a direct application in the projecting of these processes, tools and forming systems.


2015 ◽  
Vol 29 (8) ◽  
pp. 3069-3076 ◽  
Author(s):  
Shuyi Yang ◽  
Deshun Liu ◽  
Yaobing Sun

1981 ◽  
Vol 64 (10) ◽  
pp. 18-27
Author(s):  
Yoshio Hamamatsu ◽  
Katsuhiro Nakada ◽  
Ikuo Kaji ◽  
Osamu Doi

2019 ◽  
Vol 3 (1) ◽  
pp. 160-165
Author(s):  
Hendry D. Chahyadi

The designs of automotive suspension system are aiming to avoid vibration generated by road condition interference to the driver. This final project is about a quarter car modeling with simulation modeling and analysis of Two-Mass modeling. Both existing and new modeling are being compared with additional spring in the sprung mass system. MATLAB program is developed to analyze using a state space model. The program developed here can be used for analyzing models of cars and vehicles with 2DOF. The quarter car modelling is basically a mass spring damping system with the car serving as the mass, the suspension coil as the spring, and the shock absorber as the damper. The existing modeling is well-known model for simulating vehicle suspension performance. The spring performs the role of supporting the static weight of the vehicle while the damper helps in dissipating the vibrational energy and limiting the input from the road that is transmitted to the vehicle. The performance of modified modelling by adding extra spring in the sprung mass system provides more comfort to the driver. Later on this project there will be comparison graphic which the output is resulting on the higher level of damping system efficiency that leads to the riding quality.


2016 ◽  
Vol 136 (10) ◽  
pp. 454-459 ◽  
Author(s):  
Ryo Sato ◽  
Takahiro Kamada ◽  
Takashi Mineta
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document