magnetic network
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 21)

H-INDEX

19
(FIVE YEARS 3)

Author(s):  
Basharat Ullah ◽  
Faisal Khan ◽  
Bakhtiar Khan ◽  
Muhammad Yousuf

Purpose The purpose of this paper is to analyze electromagnetic performance and develop an analytical approach to find the suitable coil combination and no-load flux linkage of the proposed hybrid excited consequent pole flux switching machine (HECPFSM) while minimizing the drive storage and computational time which is the main problem in finite element analysis (FEA) tools. Design/methodology/approach First, a new HECPFSM based on conventional consequent pole flux switching permanent machine (FSPM) is proposed, and lumped parameter magnetic network model (LPMNM) is developed for the initial analysis like coil combination and no-load flux linkage. In LPMNM, all the parts of one-third machine are modeled which helps in reduction of drive storage, computational complexity and computational time without affecting the accuracy. Second, self and mutual inductance are calculated in the stator, and dq-axis inductance is calculated using park transformation in the rotor of the proposed machine. Furthermore, on-load performance analysis, like average torque, torque density and efficiency, is done by FEA. Findings The developed LPMNM is validated by FEA via JMAG v. 19.1. The results obtained show good agreement with an accuracy of 96.89%. Practical implications The proposed HECPFSM is developed for high-speed brushless AC applications like electric vehicle (EV)/hybrid electric vehicle (HEV). Originality/value The proposed HECPFSM offers better flux regulation capability with enhanced electromagnetic performance as compared to conventional consequent pole FSPM. Moreover, the developed LPMNM reduces drive storage and computational time by modeling one-third of the machine.


Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2051
Author(s):  
Luca Cinti ◽  
Mattia Carlucci ◽  
Nicola Bianchi ◽  
Manuele Bertoluzzo

Potentials and limits of the Hybrid-Excitation Permanent-Magnet (HEPM) synchronous machine are dealt with in this paper. A six-pole machine is taken into consideration, and both parallel and series configurations are analysed and compared. Taking advantage of the rotor excitation coils, the permanent magnet (PM) rotor flux can be adjusted according to the operating speed to improve its performance parameters. The electro-magnetic force is analysed in its first harmonic and in the complete shape. Moreover, a comparison between analytical and numerical formulation has been done for the rotor current control. In particular, the speed range is extended, and electro-mechanical torque and power are increased, as well as the efficiency. It will be shown that the rotor flux reduction by using the excitation winding yields an improvement of the motor performance. The main advantage will be obtained during the flux-weakening operations. In this paper, different rotor topologies will be analysed to highlight the advantages and drawbacks of each of them, and how it is possible to achieve higher speed with higher torque and without high saliency ratio. A magnetic network will be introduced to explain the different contribution of the excitation winding to the rotor flux. Furthermore, a comparison of the amount of the volume of PM, copper and iron in internal permanent magnet (IPM) motor and HEPM motor will be analysed. Actually, an analysis of the harmonic content in the electro-motive force even varying the excitation current and a mechanical stress analysis of each machine will be shown. Finally, it will be verified that the excitation losses represent a minimum component of the total losses.


Atmosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 938
Author(s):  
Stefano Scardigli ◽  
Francesco Berrilli ◽  
Dario Del Moro ◽  
Luca Giovannelli

The multiscale dynamics associated with turbulent convection present in physical systems governed by very high Rayleigh numbers still remains a vividly disputed topic in the community of astrophysicists, and in general, among physicists dealing with heat transport by convection. The Sun is a very close star for which detailed observations and estimations of physical properties on the surface, connected to the processes of the underlying convection zone, are possible. This makes the Sun a unique natural laboratory in which to investigate turbulent convection in the hard turbulence regime, a regime typical of systems characterized by high values of the Rayleigh number. In particular, it is possible to study the geometry of convection using the photospheric magnetic voids (or simply voids), the quasi-polygonal quiet regions nearly devoid of magnetic elements, which cover the whole solar surface and which form the solar magnetic network. This work presents the most extensive statistics, both in the spatial scales studied (1–80 Mm) and in the temporal duration (SC 23 and SC 24), to investigate the multiscale nature of solar magnetic patterns associated with the turbulent convection of our star. We show that the size distribution of the voids, in the 1–80 Mm range, for the 317,870 voids found in the 692 analyzed magnetograms, is basically described by an exponential function.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 32239-32248
Author(s):  
Peipei Yang ◽  
Yanping Liang ◽  
Xu Bian ◽  
Chenguang Wang

Sign in / Sign up

Export Citation Format

Share Document