Contact force modeling and analysis for robotic tilted-disc polishing of freeform workpieces

2020 ◽  
Vol 66 ◽  
pp. 188-200
Author(s):  
MuBang Xiao ◽  
Ye Ding ◽  
Zaojun Fang ◽  
Guilin Yang
2011 ◽  
Vol 143-144 ◽  
pp. 148-153 ◽  
Author(s):  
Xiao Zhuo Xu ◽  
Xu Dong Wang ◽  
Hai Chao Feng ◽  
Ji Kai Si

This paper investigates the detent force modeling of a slotted iron core type vertical permanent magnet linear synchronous motor (PMLSM) for ropeless elevator applications. Variable network non-linear magnetic equivalent circuit model is established to predict the detent force of PMLSM. The topology structure of equivalent magnetic circuit is developed and the permeances are derived and calculated. The end effect of two end teeth is essential for analysis of detent force and it is focused in the modeling. Magnetic saturation of primary iron-core also be taken into account. In final some 3-D finite-element numerical calculation results are used to validate the feasibility of the proposed method.


Author(s):  
Paulo Flores ◽  
Hamid M. Lankarani

A general methodology for the dynamic modeling and analysis of planar multibody systems with multiple clearance joints is presented. The inter-connecting body components that constitute a real joint are modeled as colliding bodies, which dynamic behaviors are influenced by geometric, physical and mechanical properties of the contacting surfaces. A continuous contact force model, based on the elastic Hertz theory, together with a dissipative term, is used to evaluate the intra-joint contact forces. The incorporation of the friction, based on the classical Coulomb’s friction law, is also included. The suitable contact force models are embedded into the dynamic equations of motion for the multibody system. A simple mechanical system with multiple clearance joints is used to demonstrate the accuracy and efficiency of the presented approach and to discuss the main assumptions and procedures adopted. The effects of single versus multiple clearance joints are discussed.


2007 ◽  
Vol 344 ◽  
pp. 419-426 ◽  
Author(s):  
Branimir Barisic ◽  
Miljenko Dino Math ◽  
Branko Grizelj

In order to determine the forming force in deep drawing and backward extrusion processes (on Al 99.5F7 specimens) the analytical, numerical and stochastic modeling and analysis of forming force on the basis of the Box-Wilson’s multi factorial experimental designs by use of rotatable experimental design were carried out. The goal of the paper is to predict the force in these different forming processes giving identical parts by means of different modeling approaches. This study will seek to compare the results of these modeling solutions with experimental results serving to check the correction and the verification of analytic, stochastic and numerically obtained results. Also, the scope of the present paper is to evaluate different parameters affecting these processes and to examine some experimental procedures in laboratory scale for the listed material in order to give more useful information in numerical and stochastic computations and also, to define the correlation among the parameters of these processes in order to improve the existing one and to raise it to a higher techno economic level. The increasing tendency for industrial parts cost reduction, quality improvement, materials savings, and the shortening of design and manufacturing time is more focused on this way of analysis of processes. These investigations are a basis for general conclusions about the forming force and they have a direct application in the projecting of these processes, tools and forming systems.


Author(s):  
Kota AKAI ◽  
Keiichiro FUJIMOTO ◽  
Kaname KAWATSU ◽  
Hideyo NEGISHI

Sign in / Sign up

Export Citation Format

Share Document