Design and experiment of a SMA-based continuous-stiffness-adjustment torsional elastic component for variable stiffness actuators

Author(s):  
Jie Xiong ◽  
Yuanxi Sun ◽  
Jia Zheng ◽  
Dianbiao Dong ◽  
Long Bai
Author(s):  
Yong Tao ◽  
Tianmiao Wang ◽  
Yunqing Wang ◽  
Long Guo ◽  
Hegen Xiong ◽  
...  

Purpose – This study aims to propose a new variable stiffness robot joint (VSR-joint) for operating safely. More and more variable stiffness actuators are being designed and implemented because of their ability to minimize large forces due to shocks, to safely interact with the user and their ability to store and release energy in passive elastic elements. Design/methodology/approach – The design of VSR-joint is compact and integrated highly and the operating is simply. The mechanics, the principle of operation and the model of the VSR-joint are proposed. The principle of operation of VSR-joint is based on a lever arm mechanism with a continuously regulated pivot point. The VSR-joint features a highly dynamic stiffness adjustment along with a mechanically programmable system behavior. This allows an easy adaption to a big variety of tasks. Findings – Preliminary results are presented to demonstrate the fast stiffness regulation response and the wide range of stiffness achieved by the proposed VSR-joint design. Originality/value – In this paper, a new variable stiffness joint is proposed through changing the cantilever arm to change the performance of the elastic element, which is compact, small size and simple adjustment.


2017 ◽  
Vol 21 (2) ◽  
pp. 15-23
Author(s):  
Bartłomiej Kozakiewicz ◽  
Tomasz Winiarski

2020 ◽  
Vol 17 (2) ◽  
pp. 172988142091177
Author(s):  
Jishu Guo ◽  
Junmei Guo ◽  
Zhongjun Xiao

In this article, a novel robust tracking control scheme based on linear extended state observer with estimation error compensation is proposed for the tracking control of the antagonistic variable stiffness actuator based on equivalent nonlinear torsion spring and the serial variable stiffness actuator based on lever mechanism. For the dynamic models of these two classes of variable stiffness actuators, considering the parametric uncertainties, the unknown friction torques acting on the driving units, the unknown external disturbances acting on the output links and the input saturation constraints, an integral chain pseudo-linear system with input saturation constraints and matched lumped disturbances is established by coordinate transformation. Subsequently, the matched lumped disturbances in the pseudo-linear system are extended to the new system states, and we obtain an extended integral chain pseudo-linear system. Then, we design the linear extended state observer to estimate the unknown states of the extended pseudo-linear system. Considering the input saturation constraints in the extended pseudo-linear system and the estimation errors of the linear extended state observer with fixed preset observation gains, the adaptive input saturation compensation laws and the novel estimation error compensators are designed. Finally, a robust tracking controller based on linear extended state observer, sliding mode control, adaptive input saturation compensation laws, and estimating error compensators is designed to achieve simultaneous position and stiffness tracking control of these two classes of variable stiffness actuators. Under the action of the designed controller, the semi-global uniformly ultimately bounded stability of the closed-loop system is proved by the stability analysis of the candidate Lyapunov function. The simulation results show the effectiveness, robustness, and adaptability of the designed controller in the tracking control of these two classes of variable stiffness actuators. Furthermore, the simulation comparisons show the effectiveness of the proposed estimation error compensation measures in reducing the tracking errors and improving the disturbance rejection performance of the controller.


Soft Robotics ◽  
2015 ◽  
pp. 231-254 ◽  
Author(s):  
Sebastian Wolf ◽  
Thomas Bahls ◽  
Maxime Chalon ◽  
Werner Friedl ◽  
Markus Grebenstein ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document