Exploration of Coriolis force on motion of air over the upper horizontal surface of a paraboloid of revolution

2020 ◽  
Vol 95 (3) ◽  
pp. 035210 ◽  
Author(s):  
O K Kọríkọ ◽  
K S Adegbie ◽  
A S Oke ◽  
I L Animasaun
2018 ◽  
Vol 141 (2) ◽  
Author(s):  
I. L. Animasaun ◽  
B. Mahanthesh ◽  
A. O. Jagun ◽  
T. D. Bankole ◽  
R. Sivaraj ◽  
...  

Combination of electric and magnetic forces on charged molecules of flowing fluid in the presence of a significant electromagnetic fields on surfaces with a nonuniform thickness (as in the case of upper pointed surface of an aircraft and bonnet of a car which are examples of upper horizontal surfaces of a paraboloid of revolution—uhspr) is inevitable. In this study, the influence of imposed magnetic field and Hall effects on the flow of 29 nm CuO–water nanofluid over such object is presented. Suitable similarity variables were employed to nondimensionalize and parameterize the dimensional governing equation. The numerical solutions of the corresponding boundary value problem were obtained using Runge–Kutta fourth-order integration scheme along with shooting technique. The domain of cross-flow velocity can be highly suppressed when the magnitude of imposed magnetic strength and that of Hall parameter are large. A significant increase in the cross-flow velocity gradient near an upper horizontal surface of the paraboloid of revolution is guaranteed with an increase in the Hall parameter. Enhancement of temperature distribution across the flow is apparent due to an increase in the volume fraction.


2018 ◽  
Vol 387 ◽  
pp. 550-561 ◽  
Author(s):  
Oluwole Daniel Makinde ◽  
M.T. Omojola ◽  
B. Mahanthesh ◽  
F.I. Alao ◽  
K.S. Adegbie ◽  
...  

The problem of fluid flow on air-jet weaving machine (i.e. mechanical engineering and chemical engineering) is deliberated upon in this report using the case of non-Newtonian Carreau fluid flow. In this report, the boundary layer flow of the fluid over an upper horizontal surface of a paraboloid of revolution is presented. The dimensional governing equations were non-dimensionalized, parameterized, solved numerically and discussed. Maximum horizontal velocity is ascertained at smaller values of thickness parameter, a larger value of buoyancy related parameter and the flow is characterized as shear-thickening. Local skin friction coefficient is an increasing and a decreasing property of Deborah number for Shear thinning and Shear-thickening cases of the flow respectively. The velocity of the flow parallel to the surface (uhspr) is a decreasing property of thickness parameter and increasing function of velocity index parameter.


Sign in / Sign up

Export Citation Format

Share Document