A study of pedestrian evacuation model of impatient queueing with cellular automata

2020 ◽  
Vol 95 (9) ◽  
pp. 095211
Author(s):  
Lei You ◽  
Qihong Wu ◽  
Juan Wei ◽  
Jun Hu ◽  
Jin Wang ◽  
...  
Author(s):  
Zhuping Zhou ◽  
Yang Zhou ◽  
Ziyuan Pu ◽  
Yong Qi ◽  
Yongneng Xu

To simulate pedestrian evacuation processes on a metro station platform in a case of fire, a specific evacuation model is proposed, using an integrated cellular automata (CA) approach, in which the impacts from exits, other evacuees, and fire and smoke are included to measure the probability of the evacuee getting to each neighboring cell. The evacuation is firstly identified as a two-stage process including the motion on the platform and on the treads. Then the evacuation space is drawn to be a three-dimensional grid space, in which the cell size is defined by the stair structure and human body size. Based on that, this study proposes two CA models to simulate the evacuees’ movement and the smoke diffusion separately. Moreover, to describe the evacuation process in detail, the evacuation model is modified in three ways. First, transition rules in the evacuees’ movement model are embedded by social force theory to measure the impacts from the environment. Second, the smoke diffusion process is modified by considering the smoke control measures on the metro platform. Third, impact from smoke is quantified by the proportion of smoke in the centroid cell of evacuees. Finally, results from simulation experiments show that this model is able to recognize the arching and stagnation phenomenon at the foot of staircases, and the relations between the evacuation time and the crowd density for different parameters are also analyzed. The proposed method of simulating the pedestrian evacuation process can be useful in providing guiding principles for the software design of evacuation in metro systems.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Qian Xiao ◽  
Jiayang Li

Crowd evacuation under emergency is an important task of world public security research and practice. In order to describe the microemotional contagion of evacuation individuals, a cellular automata-based evacuation model of emotional contagion crowd based on the classical SIS model of infectious diseases is proposed in this paper. Firstly, the state of evacuation individual is defined as “emotional susceptible” and “emotional infective.” Then, a dynamic model considering emotional contagion is established with cellular automata. Based on the models of static floor field and dynamic floor field, the emotion updating rules and state updating rules are constructed. The influence of perception domain radius on pedestrian evacuation process is analyzed through experiments. The conclusion can provide evacuation guidance for evacuation individuals. The comparative experiment results show that the improved model can reflect the movement characteristics of evacuation individuals effectively. The evacuation efficiency of the whole system is also effectively improved due to the consideration of emotional contagion and evacuation strategy.


2017 ◽  
Vol 28 (10) ◽  
pp. 1750128 ◽  
Author(s):  
Yongxing Li ◽  
Hongfei Jia ◽  
Jun Li ◽  
Jian Gong ◽  
Kechao Sun

Considering the process of pedestrian evacuation as pedestrian walking freely from current position to exit and queuing at the exit, estimated evacuation time model for single pedestrian is established. Based on estimated evacuation time and shortest distance, pedestrian exit choice model is established considering pedestrian preference. Pedestrian exit choice model is added into pedestrian simulation model which is built based on cellular automata. Pedestrian evacuation behavior in multi-exits case is simulated. The simulations indicate that pedestrian evacuation model built in our work describes the pedestrian evacuation behavior well.


2014 ◽  
Vol 472 ◽  
pp. 574-578 ◽  
Author(s):  
Hai Tao Chen ◽  
Peng Yang ◽  
Run Cang Yu

In emergencies such as fire, pedestrian evacuation for bad visibility is significantly different to the evacuation for normal visibility. In the novel evacuation model, the strategies of pedestrian evacuation and the moving rules are proposed. Then the formulas of the evacuation time are achieved and the time ratio is 0.63. More, using the programming language, pedestrian evacuation is simulated and reproduced. The studies shows that the proposed evacuation model can well reflect the process of pedestrian evacuation; and the evacuation signs of reasonable design can significantly optimize the process. The calculation results also show that the ratio of evacuation time between considering evacuation signs and no evacuation signs is close to 0.63 that is the theoretical results.


2011 ◽  
Vol 97-98 ◽  
pp. 956-959 ◽  
Author(s):  
Nuo Zhu ◽  
Bin Jia ◽  
Chun Fu Shao

A dynamic parameters model is presented based on cellular automata for pedestrian evacuation in this paper. The dynamic parameters: Direction-parameter, Empty-parameter and Cognition-parameter are formulated to simplify tactically the decision-making process of pedestrians, which can reflect the pedestrian judgment on the surrounding conditions and decide the pedestrian’s choice of action. Pedestrian moving rules were established, according to two-dimensional cellular automaton. The simulation results of the model are analyzed. It is observed that there is a linear relationship between evacuation time and pedestrian density, however, there is a negative exponential relationship between evacuation time and exit width. The simulation results correspond with the actual, it is instructional significant for pedestrian evacuation.


Sign in / Sign up

Export Citation Format

Share Document