Mixed-mode oscillations for slow-fast perturbed systems

2021 ◽  
Author(s):  
Yaru Liu ◽  
Shenquan Liu ◽  
Bo Lu ◽  
Jürgen Kurths

Abstract This article concerns the dynamics of mixed-mode oscillations (MMOs) emerging from the calcium-based inner hair cells (IHCs) model in the auditory cortex. The paper captures the MMOs generation mechanism based on the geometric singular perturbation theory (GSPT) after exploiting the average analysis for reducing the full model. Our analysis also finds that the critical manifold and folded surface are central to the mechanism of the existence of MMOs at the folded saddle for the perturbed system. The system parameters, such like the maximal calcium channels conductance, controls the firing patterns, and many new oscillations occur for the IHCs model. Tentatively, we conduct dynamic analysis combined with dynamic method based on GSPT by giving slow-fast analysis for the singular perturbed models and bifurcation analysis. In particular, we explore the two-slow-two-fast and three-slow-one-fast IHCs perturbed systems with layer and reduced problems so that differential-algebraic equations are obtained. This paper reveals the underlying dynamic properties of perturbed systems under singular perturbation theory.

2006 ◽  
Vol 136 (6) ◽  
pp. 1317-1325 ◽  
Author(s):  
Guojian Lin ◽  
Rong Yuan

A general theorem about the existence of periodic solutions for equations with distributed delays is obtained by using the linear chain trick and geometric singular perturbation theory. Two examples are given to illustrate the application of the general the general therom.


Author(s):  
Ali Atabaigi

This paper studies the dynamics of the generalist predator–prey systems modeled in [E. Alexandra, F. Lutscher and G. Seo, Bistability and limit cycles in generalist predator–prey dynamics, Ecol. Complex. 14 (2013) 48–55]. When prey reproduces much faster than predator, by combining the normal form theory of slow-fast systems, the geometric singular perturbation theory and the results near non-hyperbolic points developed by Krupa and Szmolyan [Relaxation oscillation and canard explosion, J. Differential Equations 174(2) (2001) 312–368; Extending geometric singular perturbation theory to nonhyperbolic points—fold and canard points in two dimensions, SIAM J. Math. Anal. 33(2) (2001) 286–314], we provide a detailed mathematical analysis to show the existence of homoclinic orbits, heteroclinic orbits and canard limit cycles and relaxation oscillations bifurcating from the singular homoclinic cycles. Moreover, on global stability of the unique positive equilibrium, we provide some new results. Numerical simulations are also carried out to support the theoretical results.


2003 ◽  
Vol 14 (1) ◽  
pp. 85-110 ◽  
Author(s):  
ARJEN DOELMAN ◽  
BJÖRN SANDSTEDE ◽  
ARND SCHEEL ◽  
GUIDO SCHNEIDER

For a pattern-forming system with two unbounded spatial directions that is near the onset to instability, we prove the existence of modulated fronts that connect (i) stable hexagons with the unstable trivial pattern, (ii) stable hexagons with unstable roll solutions, (iii) stable hexagons with unstable hexagons, and (iv) stable roll solutions with unstable hexagons. Our approach is based on spatial dynamics, bifurcation theory, and geometric singular perturbation theory.


Sign in / Sign up

Export Citation Format

Share Document