scholarly journals Form factors for dark matter capture by the Sun in effective theories

2015 ◽  
Vol 2015 (04) ◽  
pp. 042-042 ◽  
Author(s):  
Riccardo Catena ◽  
Bodo Schwabe
2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Yifan Chen ◽  
Ming-Yang Cui ◽  
Jing Shu ◽  
Xiao Xue ◽  
Guan-Wen Yuan ◽  
...  

Abstract The XENON1T collaboration reported an excess of the low-energy electron recoil events between 1 and 7 keV. We explore the possibility to explain such an anomaly by the MeV-scale dark matter (DM) heated by the interior of the Sun due to the same DM-electron interaction as in the detector. The kinetic energies of heated DM particles can reach a few keV, and can potentially account for the excess signals detected by XENON1T. We study different form factors of the DM-electron interactions, F(q) ∝ qi with q being the momentum exchange and i = 0, 1, 2, and find that for all these cases the inclusion of the Sun-heated DM component improves the fit to the XENON1T data. The inferred DM-electron scattering cross section (at q = αme where α is the fine structure constant and me is electron mass) is from ∼ 10−38 cm2 (for i = 0) to ∼ 10−42 cm2 (for i = 2). We also derive constraints on the DM-electron cross sections for these form factors, which are stronger than previous results with similar assumptions. We emphasize that the Sun-heated DM scenario relies on the minimum assumption on DM models, which serves as a general explanation of the XENON1T anomaly via DM-electron interaction. The spectrum of the Sun-heated DM is typically soft comparing to other boosted DM, so the small recoil events are expected to be abundant in this scenario. More sensitive direct detection experiments with lower thresholds can possibly distinguish this scenario with other boosted DM models or solar axion models.


1987 ◽  
Vol 117 ◽  
pp. 490-490
Author(s):  
A. K. Drukier ◽  
K. Freese ◽  
D. N. Spergel

We consider the use of superheated superconducting colloids as detectors of weakly interacting galactic halo candidate particles (e.g. photinos, massive neutrinos, and scalar neutrinos). These low temperature detectors are sensitive to the deposition of a few hundreds of eV's. The recoil of a dark matter particle off of a superheated superconducting grain in the detector causes the grain to make a transition to the normal state. Their low energy threshold makes this class of detectors ideal for detecting massive weakly interacting halo particles.We discuss realistic models for the detector and for the galactic halo. We show that the expected count rate (≈103 count/day for scalar and massive neutrinos) exceeds the expected background by several orders of magnitude. For photinos, we expect ≈1 count/day, more than 100 times the predicted background rate. We find that if the detector temperature is maintained at 50 mK and the system noise is reduced below 5 × 10−4 flux quanta, particles with mass as low as 2 GeV can be detected. We show that the earth's motion around the Sun can produce a significant annual modulation in the signal.


2014 ◽  
Vol 221 (2951) ◽  
pp. 12
Author(s):  
Katia Moskvitch
Keyword(s):  

Author(s):  
Subhaditya Bhattacharya ◽  
José Wudka

Standard Model (SM) of particle physics has achieved enormous success in describing the interactions among the known fundamental constituents of nature, yet it fails to describe phenomena for which there is very strong experimental evidence, such as the existence of dark matter, and which point to the existence of new physics not included in that model; beyond its existence, experimental data, however, have not provided clear indications as to the nature of that new physics. The effective field theory (EFT) approach, the subject of this review, is designed for this type of situations; it provides a consistent and unbiased framework within which to study new physics effects whose existence is expected but whose detailed nature is known very imperfectly. We will provide a description of this approach together with a discussion of some of its basic theoretical aspects. We then consider applications to high-energy phenomenology and conclude with a discussion of the application of EFT techniques to the study of dark matter physics and its possible interactions with the SM. In several of the applications we also briefly discuss specific models that are ultraviolet complete and may realize the effects described by the EFT.


2021 ◽  
Vol 922 (2) ◽  
pp. 104
Author(s):  
Raymond G. Carlberg ◽  
Carl J. Grillmair

Abstract The proper motions of stars in the outskirts of globular clusters are used to estimate cluster velocity dispersion profiles as far as possible within their tidal radii. We use individual color–magnitude diagrams to select high-probability cluster stars for 25 metal-poor globular clusters within 20 kpc of the Sun, 19 of which have substantial numbers of stars at large radii. Of the 19, 11 clusters have a falling velocity dispersion in the 3–6 half-mass radii range, 6 are flat, and 2 plausibly have a rising velocity dispersion. The profiles are all in the range expected from simulated clusters that started at high redshift in a zoom-in cosmological simulation. The 11 clusters with falling velocity dispersion profiles are consistent with no dark matter above the Galactic background. The six clusters with approximately flat velocity dispersion profiles could have local dark matter, but are ambiguous. The two clusters with rising velocity dispersion profiles are consistent with a remnant local dark matter halo, but need membership confirmation and detailed orbital modeling to further test these preliminary results.


1991 ◽  
Vol 44 (8) ◽  
pp. 2220-2240 ◽  
Author(s):  
N. Sato ◽  
K. S. Hirata ◽  
T. Kajita ◽  
T. Kifune ◽  
K. Kihara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document