scholarly journals Clustering in massive neutrino cosmologies via Eulerian Perturbation Theory

2021 ◽  
Vol 2021 (11) ◽  
pp. 028
Author(s):  
Alejandro Aviles ◽  
Arka Banerjee ◽  
Gustavo Niz ◽  
Zachary Slepian

Abstract We introduce an Eulerian Perturbation Theory to study the clustering of tracers for cosmologies in the presence of massive neutrinos. Our approach is based on mapping recently-obtained Lagrangian Perturbation Theory results to the Eulerian framework. We add Effective Field Theory counterterms, IR-resummations and a biasing scheme to compute the one-loop redshift-space power spectrum. To assess our predictions, we compare the power spectrum multipoles against synthetic halo catalogues from the QUIJOTE simulations, finding excellent agreement on scales k ≲ 0.25 h Mpc-1. One can obtain the same fitting accuracy using higher wave-numbers, but then the theory fails to give a correct estimation of the linear bias parameter. We further discuss the implications for the tree-level bispectrum. Finally, calculating loop corrections is computationally costly, hence we derive an accurate approximation wherein we retain only the main features of the kernels, as produced by changes to the growth rate. As a result, we show how FFTLog methods can be used to further accelerate the loop computations with these reduced kernels.

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Svjetlana Fajfer ◽  
Jernej F. Kamenik ◽  
M. Tammaro

Abstract We explore the interplay of New Physics (NP) effects in (g− 2)ℓ and h→ℓ+ℓ− within the Standard Model Effective Field Theory (SMEFT) framework, including one-loop Renormalization Group (RG) evolution of the Wilson coefficients as well as matching to the observables below the electroweak symmetry breaking scale. We include both the leading dimension six chirality flipping operators including a Higgs and SU(2)L gauge bosons as well as four-fermion scalar and tensor operators, forming a closed operator set under the SMEFT RG equations. We compare present and future experimental sensitivity to different representative benchmark scenarios. We also consider two simple UV completions, a Two Higgs Doublet Model and a single scalar LeptoQuark extension of the SM, and show how tree level matching to SMEFT followed by the one-loop RG evolution down to the electroweak scale can reproduce with high accuracy the (g−2)ℓ and h→ℓ+ℓ− contributions obtained by the complete one- and even two-loop calculations in the full models.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Jacopo Fumagalli ◽  
Marieke Postma ◽  
Melvin van den Bout

Abstract Most of the inflationary models that are in agreement with the Planck data rely on the presence of non-renormalizable operators. If the connection to low energy particle physics is made, the renormalization group (RG) introduces a sensitivity to ultraviolet (UV) physics that can be crucial in determining the inflationary predictions. We analyse this effect for the Standard Model (SM) augmented with non-minimal derivative couplings to gravity. Our set-up reduces to the SM for small values of the Higgs field, and allows for inflation in the opposite large field regime. The one-loop beta functions in the inflationary region are calculated using a covariant approach that properly accounts for the non-trivial structure of the field space manifold. We run the SM parameters from the electroweak to the inflationary scale, matching the couplings of the different effective field theories at the boundary between the two regimes, where we also include threshold corrections that parametrize effects from UV physics. We then compute the spectral index and tensor-to-scalar ratio and find that RG flow corrections can be determinant: a scenario that is ruled out at tree level can be resurrected and vice versa.


2021 ◽  
Vol 2021 (12) ◽  
pp. 025
Author(s):  
Rebeca Martinez-Carrillo ◽  
Juan Carlos Hidalgo ◽  
Karim A. Malik ◽  
Alkistis Pourtsidou

Abstract We compute the real space galaxy power spectrum, including the leading order effects of General Relativity and primordial non-Gaussianity from the f NL and g NL parameters. Such contributions come from the one-loop matter power spectrum terms dominant at large scales, and from the factors of the non-linear bias parameter b NL (akin to the Newtonian b ϕ). We assess the detectability of these contributions in Stage-IV surveys. In particular, we note that specific values of the bias parameter may erase the primordial and relativistic contributions to the configuration space power spectrum.


2015 ◽  
Vol 30 (15) ◽  
pp. 1550103 ◽  
Author(s):  
Andrea Addazi ◽  
Giampiero Esposito

The realization of a nonlocal quantum field theory without losing unitarity, gauge invariance and causality is investigated. It is commonly retained that such a formulation is possible at tree level, but at quantum level acausality is expected to reappear at one loop. We suggest that the problem of acausality is, in a broad sense, similar to the one about anomalies in quantum field theory. By virtue of this analogy, we suggest that acausal diagrams resulting from the fermionic sector and the bosonic one might cancel each other, with a suitable content of fields and suitable symmetries. As a simple example, we show how supersymmetry can alleviate this problem in a simple and elegant way, i.e. by leading to exact cancellations of harmful diagrams, to all orders of perturbation theory. An infinite number of divergent diagrams cancel each other by virtue of the nonrenormalization theorem of supersymmetry. However, supersymmetry is not enough to protect a theory from all acausal divergences. For instance, acausal contributions to supersymmetric corrections to D-terms are not protected by supersymmetry. On the other hand, we show in detail how supersymmetry also helps in dealing with D-terms: divergences are not canceled but they become softer than in the nonsupersymmetric case. The supergraphs' formalism turns out to be a powerful tool to reduce the complexity of perturbative calculations.


2021 ◽  
Vol 1 ◽  
pp. 152
Author(s):  
Giovanni Arico' ◽  
Raul Angulo ◽  
Matteo Zennaro

The linear matter power spectrum is an essential ingredient in all theoretical models for interpreting large-scale-structure observables. Although Boltzmann codes such as CLASS or CAMB are very efficient at computing the linear spectrum, the analysis of data usually requires 104-106 evaluations, which means this task can be the most computationally expensive aspect of data analysis. Here, we address this problem by building a neural network emulator that provides the linear theory (total and cold) matter power spectrum in about one millisecond with ≈0.2%(0.5%) accuracy over redshifts z ≤ 3 (z ≤ 9), and scales10-4 ≤ k [h Mpc-1] < 50. We train this emulator with more than 200,000 measurements, spanning a broad cosmological parameter space that includes massive neutrinos and dynamical dark energy. We show that the parameter range and accuracy of our emulator is enough to get unbiased cosmological constraints in the analysis of a Euclid-like weak lensing survey. Complementing this emulator, we train 15 other emulators for the cross-spectra of various linear fields in Eulerian space, as predicted by 2nd-order Lagrangian Perturbation theory, which can be used to accelerate perturbative bias descriptions of galaxy clustering. Our emulators are specially designed to be used in combination with emulators for the nonlinear matter power spectrum and for baryonic effects, all of which are publicly available at http://www.dipc.org/bacco.


2021 ◽  
Vol 11 (3) ◽  
Author(s):  
Mikael Chala ◽  
Guilherme Guedes ◽  
Maria Ramos ◽  
Jose Santiago

We compute the one-loop renormalisation group running of the bosonic Standard Model effective operators to order v^4/\Lambda^4v4/Λ4, with v\sim 246v∼246 GeV being the electroweak scale and \LambdaΛ the unknown new physics threshold. We concentrate on the effects triggered by pairs of the leading dimension-six interactions, namely those that can arise at tree level in weakly-coupled ultraviolet completions of the Standard Model. We highlight some interesting consequences, including the interplay between positivity bounds and the form of the anomalous dimensions; the non-renormalisation of the SS and UU parameters; or the importance of radiative corrections to the Higgs potential for the electroweak phase transition. As a byproduct of this work, we provide a complete Green basis of operators involving only the Higgs and derivatives at dimension-eight, comprising 13 redundant interactions.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Sarah Hoback ◽  
Sarthak Parikh

Abstract We conjecture a simple set of “Feynman rules” for constructing n-point global conformal blocks in any channel in d spacetime dimensions, for external and exchanged scalar operators for arbitrary n and d. The vertex factors are given in terms of Lauricella hypergeometric functions of one, two or three variables, and the Feynman rules furnish an explicit power-series expansion in powers of cross-ratios. These rules are conjectured based on previously known results in the literature, which include four-, five- and six-point examples as well as the n-point comb channel blocks. We prove these rules for all previously known cases, as well as two new ones: the seven-point block in a new topology, and all even-point blocks in the “OPE channel.” The proof relies on holographic methods, notably the Feynman rules for Mellin amplitudes of tree-level AdS diagrams in a scalar effective field theory, and is easily applicable to any particular choice of a conformal block beyond those considered in this paper.


Sign in / Sign up

Export Citation Format

Share Document