scholarly journals Gravitational waves generation in turbulent hypermagnetic fields before the electroweak phase transition

2022 ◽  
Vol 2022 (01) ◽  
pp. 021
Author(s):  
Maxim Dvornikov

Abstract We study the production of relic gravitational waves (GWs) in turbulent hypermagnetic fields (HMFs) in the symmetric phase of the early universe before the electroweak phase transition (EWPT). The noise of HMFs is modeled by the analog of the magnetic hydrodynamics turbulence. The evolution of HMFs is driven by the analogs of the chiral magnetic effect and the Adler anomalies in the presence of the nonzero asymmetries of leptons and Higgs bosons. We track the evolution of the energy density of GWs from 10 TeV down to EWPT and analyze its dependence on the parameters of the system. We also discuss the possibility to observe the predicted GW background by the current GW detectors.

2021 ◽  
Vol 911 (2) ◽  
pp. 110
Author(s):  
Axel Brandenburg ◽  
Yutong He ◽  
Tina Kahniashvili ◽  
Matthias Rheinhardt ◽  
Jennifer Schober

2011 ◽  
Vol 26 (25) ◽  
pp. 4335-4365 ◽  
Author(s):  
WEI-JIE FU ◽  
YU-XIN LIU ◽  
YUE-LIANG WU

We study the influence of the chiral phase transition on the chiral magnetic effect. The chiral electric current density along the magnetic field, the electric charge difference between on each side of the reaction plane, and the azimuthal charged-particle correlations as functions of the temperature during the QCD phase transitions are calculated. It is found that with the decrease of the temperature, the chiral electric current density, the electric charge difference, and the azimuthal charged-particle correlations all get a sudden suppression at the critical temperature of the chiral phase transition, because the large quark constituent mass in the chiral symmetry broken phase quite suppresses the axial anomaly and the chiral magnetic effect. We suggest that the azimuthal charged-particle correlations (including the correlators divided by the total multiplicity of produced charged particles which are used in current experiments and another kind of correlators not divided by the total multiplicity) can be employed to identify the occurrence of the QCD phase transitions in RHIC energy scan experiments.


2005 ◽  
Vol 20 (02) ◽  
pp. 127-134 ◽  
Author(s):  
B. K. SAHOO

The spectra of relic gravitational waves produced as a result of cosmological expansion of the inflationary models are derived in Brans–Dicke (BD) theory of gravity. The time dependence of the very early Hubble parameter and matter energy density are derived from frequency-dependent spectrum of relic gravitational waves. Also it is found that Brans–Dicke scalar field contributes to the energy density of relic gravitons.


2012 ◽  
Vol 2012 (10) ◽  
pp. 024-024 ◽  
Author(s):  
Leonardo Leitao ◽  
Ariel Mégevand ◽  
Alejandro D Sánchez

2017 ◽  
Vol 32 (08) ◽  
pp. 1750049 ◽  
Author(s):  
Andrea Addazi

We discuss the possibility to indirectly test first-order phase transitions of hidden sectors. We study the interesting example of a Dark Standard Model (D-SM) with a deformed parameter space in the Higgs potential. A dark electroweak phase transition can be limited from next future experiments like eLISA and DECIGO.


2021 ◽  
Vol 2081 (1) ◽  
pp. 012002
Author(s):  
I V Fomin ◽  
S V Chervon

Abstract We consider cosmological models based on the generalized scalar-tensor gravity, which correspond to the observational constraints on the parameters of cosmological perturbations for any model’s parameters. The estimates of the energy density of relic gravitational waves for such a cosmological models were made. The possibility of direct detection of such a gravitational waves using modern and prospective methods was discussed as well.


2017 ◽  
Vol 26 (10) ◽  
pp. 1750114 ◽  
Author(s):  
Archil Kobakhidze ◽  
Adrian Manning ◽  
Jason Yue

Within the Standard Model with nonlinearly realized electroweak symmetry, the LHC Higgs boson may reside in a singlet representation of the gauge group. Several new interactions are then allowed, including anomalous Higgs self-couplings, which may drive the electroweak phase transition to be strongly first-order. In this paper, we investigate the cosmological electroweak phase transition in a simplified model with an anomalous Higgs cubic self-coupling. We look at the feasibility of detecting gravitational waves produced during such a transition in the early universe by future space-based experiments. We demonstrate an intriguing interplay between collider measurements of the Higgs self-coupling and these potential gravitational wave measurements. We find that for the range of relatively large cubic couplings, [Formula: see text], [Formula: see text]mHz frequency gravitational waves can be observed by eLISA, while BBO will potentially be able to detect waves in a wider frequency range, [Formula: see text][Formula: see text]mHz.


Sign in / Sign up

Export Citation Format

Share Document