Thermodynamics and phase transition of topological dS black holes with nonlinear source

Author(s):  
Hui Hua Zhao ◽  
Li-Chun Zhang ◽  
Fang Liu
2016 ◽  
Vol 94 (6) ◽  
Author(s):  
Abhijit Mandal ◽  
Saurav Samanta ◽  
Bibhas Ranjan Majhi

2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Daniel Flores-Alonso ◽  
Román Linares ◽  
Marco Maceda

Abstract Recent work has shown the existence of a unique nonlinear extension of electromagnetism which preserves conformal symmetry and allows for the freedom of duality rotations. Moreover, black holes and gravitational waves have been found to exist in this nonlinearly extended electrovacuum. We generalise these dyonic black holes in two major ways: with the relaxation of their horizon topology and with the inclusion of magnetic mass. Motivated by recent attention to traversable wormholes, we use this new family of Taub-NUT spaces to construct AdS wormholes. We explore some thermodynamic features by using a semi-classical approach. Our results show that a phase transition between the nut and bolt configurations arises in a similar way to the Maxwellian case.


2019 ◽  
Vol 99 (12) ◽  
Author(s):  
Krishnakanta Bhattacharya ◽  
Sumit Dey ◽  
Bibhas Ranjan Majhi ◽  
Saurav Samanta

2019 ◽  
Vol 28 (09) ◽  
pp. 1950113 ◽  
Author(s):  
Bin Liang ◽  
Shao-Wen Wei ◽  
Yu-Xiao Liu

Using the quasinormal modes of a massless scalar perturbation, we investigate the small/large black hole phase transition in the Lorentz symmetry breaking massive gravity. We mainly focus on two issues: (i) the sign change of slope of the quasinormal mode frequencies in the complex-[Formula: see text] diagram; (ii) the behaviors of the imaginary part of the quasinormal mode frequencies along the isobaric or isothermal processes. For the first issue, our result shows that, at low fixed temperature or pressure, the phase transition can be probed by the sign change of slope. While increasing the temperature or pressure to certain values near the critical point, there will appear the deflection point, which indicates that such method may not be appropriate to test the phase transition. In particular, the behavior of the quasinormal mode frequencies for the small and large black holes tend to be the same at the critical point. For the second issue, it is shown that the nonmonotonic behavior is observed only when the small/large black hole phase transition occurs. Therefore, this property can provide us with an additional method to probe the phase transition through the quasinormal modes.


2018 ◽  
Vol 33 (35) ◽  
pp. 1850210 ◽  
Author(s):  
C. L. Ahmed Rizwan ◽  
A. Naveena Kumara ◽  
Deepak Vaid ◽  
K. M. Ajith

In this paper, we investigate the Joule–Thomson effects of AdS black holes with a global monopole. We study the effect of the global monopole parameter [Formula: see text] on the inversion temperature and isenthalpic curves. The obtained result is compared with Joule–Thomson expansion of van der Waals fluid, and the similarities were noted. Phase transition occuring in the extended phase space of this black hole is analogous to that in van der Waals gas. Our study shows that global monopole parameter [Formula: see text] plays a very important role in Joule–Thomson expansion.


2020 ◽  
Vol 35 (32) ◽  
pp. 2050266 ◽  
Author(s):  
Everton M. C. Abreu ◽  
Jorge Ananias Neto ◽  
Edésio M. Barboza ◽  
Albert C. R. Mendes ◽  
Bráulio B. Soares

In this letter we have shown that, from the standard thermodynamic functions, the mathematical form of an equipartition theorem may be related to the algebraic expression of a particular entropy initially chosen to describe the black hole event horizon. Namely, we have different equipartition expressions for distinct statistics. To this end, four different mathematical expressions for the entropy have been selected to demonstrate our objective. Furthermore, a possible phase transition is observed in the heat capacity behavior of the Tsallis and Cirto entropy model.


2020 ◽  
Vol 811 ◽  
pp. 135871
Author(s):  
Adil Belhaj ◽  
Anas El Balali ◽  
Wijdane El Hadri ◽  
Emilio Torrente-Lujan

Sign in / Sign up

Export Citation Format

Share Document