Effect of interface roughness on the carrier transport in germanium MOSFETs investigated by Monte Carlo method

2010 ◽  
Vol 19 (5) ◽  
pp. 057304 ◽  
Author(s):  
Du Gang ◽  
Liu Xiao-Yan ◽  
Xia Zhi-Liang ◽  
Yang Jing-Feng ◽  
Han Ru-Qi
2005 ◽  
Vol 19 (21) ◽  
pp. 3353-3377 ◽  
Author(s):  
V. A. VETTCHINKINA ◽  
A. BLOM ◽  
M. A. ODNOBLYUDOV

We present a complete Monte Carlo simulation of the transport properties of a Si/SiGe quantum well. The scattering mechanisms, viz. intervalley phonons, acoustic phonons, interface roughness and impurity scattering (including resonant scattering), are considered in detail, and we derive analytic expressions for the scattering rates, in each case properly taking the quantized electron wave functions into account. The numerically obtained distribution function is used to discuss the influence of each scattering mechanism for different electric fields applied parallel to the interfaces and also different temperatures.


1996 ◽  
Vol 79 (2) ◽  
pp. 911 ◽  
Author(s):  
Shinya Yamakawa ◽  
Hiroaki Ueno ◽  
Kenji Taniguchi ◽  
Chihiro Hamaguchi ◽  
Kazuo Miyatsuji ◽  
...  

2008 ◽  
Author(s):  
Nikolaos Vogiatzis ◽  
Ying Ning Qiu ◽  
Judy M. Rorison

1974 ◽  
Vol 22 ◽  
pp. 307 ◽  
Author(s):  
Zdenek Sekanina

AbstractIt is suggested that the outbursts of Periodic Comet Schwassmann-Wachmann 1 are triggered by impacts of interplanetary boulders on the surface of the comet’s nucleus. The existence of a cloud of such boulders in interplanetary space was predicted by Harwit (1967). We have used the hypothesis to calculate the characteristics of the outbursts – such as their mean rate, optically important dimensions of ejected debris, expansion velocity of the ejecta, maximum diameter of the expanding cloud before it fades out, and the magnitude of the accompanying orbital impulse – and found them reasonably consistent with observations, if the solid constituent of the comet is assumed in the form of a porous matrix of lowstrength meteoric material. A Monte Carlo method was applied to simulate the distributions of impacts, their directions and impact velocities.


Author(s):  
Makoto Shiojiri ◽  
Toshiyuki Isshiki ◽  
Tetsuya Fudaba ◽  
Yoshihiro Hirota

In hexagonal Se crystal each atom is covalently bound to two others to form an endless spiral chain, and in Sb crystal each atom to three others to form an extended puckered sheet. Such chains and sheets may be regarded as one- and two- dimensional molecules, respectively. In this paper we investigate the structures in amorphous state of these elements and the crystallization.HRTEM and ED images of vacuum-deposited amorphous Se and Sb films were taken with a JEM-200CX electron microscope (Cs=1.2 mm). The structure models of amorphous films were constructed on a computer by Monte Carlo method. Generated atoms were subsequently deposited on a space of 2 nm×2 nm as they fulfiled the binding condition, to form a film 5 nm thick (Fig. 1a-1c). An improvement on a previous computer program has been made as to realize the actual film formation. Radial distribution fuction (RDF) curves, ED intensities and HRTEM images for the constructed structure models were calculated, and compared with the observed ones.


Sign in / Sign up

Export Citation Format

Share Document