Binary Bell polynomial application in generalized (2+1)-dimensional KdV equation with variable coefficients

2011 ◽  
Vol 20 (11) ◽  
pp. 110204 ◽  
Author(s):  
Yi Zhang ◽  
Wei-Wei Wei ◽  
Teng-Fei Cheng ◽  
Yang Song
2009 ◽  
Vol 2009 ◽  
pp. 1-13 ◽  
Author(s):  
Alvaro H. Salas S ◽  
Cesar A. Gómez S

The general projective Riccati equation method and the Exp-function method are used to construct generalized soliton solutions and periodic solutions to special KdV equation with variable coefficients and forcing term.


2014 ◽  
Vol 548-549 ◽  
pp. 1196-1200
Author(s):  
Yong Mei Bao ◽  
Siqintana Bao

In order to construct exact soliton solutions of nonlinear evolution equations with variable coefficients. By using a transformation, the variable coefficient KdV equation with forced Term is reduced to nonlinear ordinary differential equation (NLODE), after that, a number of exact solitons solutions of variable coefficient KdV equation with forced Term are obtained by using the equation shorted in NLODE. As it showed above, this kind of method can be applied in solving a large number of nonlinear evolution equations.


2000 ◽  
Vol 424 ◽  
pp. 279-301 ◽  
Author(s):  
D. A. HORN ◽  
L. G. REDEKOPP ◽  
J. IMBERGER ◽  
G. N. IVEY

An extended Korteweg–de Vries (KdV) equation is derived that describes the evolution and propagation of long interfacial gravity waves in the presence of a strong, space–time varying background. Provision is made in the derivation for a spatially varying lower depth so that some topographic effects can also be included. The extended KdV model is applied to some simple scenarios in basins of constant and varying depths, using approximate expressions for the variable coefficients derived for the case when the background field is composed of a moderate-amplitude ultra-long wave. The model shows that energy can be transferred either to or from the evolving wave packet depending on the relative phases of the evolving waves and the background variation. Comparison of the model with laboratory experiments confirms its applicability and usefulness in examining the evolution of weakly nonlinear waves in natural systems where the background state is rarely uniform or steady.


Sign in / Sign up

Export Citation Format

Share Document