Exact Soliton Solutions of the Variable Coefficient KdV Equation with Forced Term

2014 ◽  
Vol 548-549 ◽  
pp. 1196-1200
Author(s):  
Yong Mei Bao ◽  
Siqintana Bao

In order to construct exact soliton solutions of nonlinear evolution equations with variable coefficients. By using a transformation, the variable coefficient KdV equation with forced Term is reduced to nonlinear ordinary differential equation (NLODE), after that, a number of exact solitons solutions of variable coefficient KdV equation with forced Term are obtained by using the equation shorted in NLODE. As it showed above, this kind of method can be applied in solving a large number of nonlinear evolution equations.

2016 ◽  
Vol 2016 ◽  
pp. 1-39 ◽  
Author(s):  
V. O. Vakhnenko ◽  
E. J. Parkes

A variety of methods for examining the properties and solutions of nonlinear evolution equations are explored by using the Vakhnenko equation (VE) as an example. The VE, which arises in modelling the propagation of high-frequency waves in a relaxing medium, has periodic and solitary traveling wave solutions some of which are loop-like in nature. The VE can be written in an alternative form, known as the Vakhnenko-Parkes equation (VPE), by a change of independent variables. The VPE has anN-soliton solution which is discussed in detail. Individual solitons are hump-like in nature whereas the corresponding solution to the VE comprisesN-loop-like solitons. Aspects of the inverse scattering transform (IST) method, as applied originally to the KdV equation, are used to find one- and two-soliton solutions to the VPE even though the VPE’s spectral equation is third-order and not second-order. A Bäcklund transformation for the VPE is used to construct conservation laws. The standard IST method for third-order spectral problems is used to investigate solutions corresponding to bound states of the spectrum and to a continuous spectrum. This leads toN-soliton solutions andM-mode periodic solutions, respectively. Interactions between these types of solutions are investigated.


2021 ◽  
Vol 22 ◽  
pp. 103979
Author(s):  
Nauman Raza ◽  
Muhammad Hamza Rafiq ◽  
Melike Kaplan ◽  
Sunil Kumar ◽  
Yu-Ming Chu

2017 ◽  
Vol 2017 ◽  
pp. 1-6
Author(s):  
Wenxia Chen ◽  
Danping Ding ◽  
Xiaoyan Deng ◽  
Gang Xu

The evolution process of four class soliton solutions is investigated by basic calculus theory. For any given x, we describe the special curvature evolution following time t for the curve of soliton solution and also study the fluctuation of solution curve.


2021 ◽  
pp. 2150417
Author(s):  
Kalim U. Tariq ◽  
Mostafa M. A. Khater ◽  
Muhammad Younis

In this paper, some new traveling wave solutions to the conformable time-fractional Wu–Zhang system are constructed with the help of the extended Fan sub-equation method. The conformable fractional derivative is employed to transform the fractional form of the system into ordinary differential system with an integer order. Some distinct types of figures are sketched to illustrate the physical behavior of the obtained solutions. The power and effective of the used method is shown and its ability for applying different forms of nonlinear evolution equations is also verified.


2021 ◽  
pp. 2150444
Author(s):  
Loubna Ouahid ◽  
M. A. Abdou ◽  
S. Owyed ◽  
Sachin Kumar

The deoxyribonucleic acid (DNA) dynamical equation, which emerges from the oscillator chain known as the Peyrard–Bishop (PB) model for abundant optical soliton solutions, is presented, along with a novel fractional derivative operator. The Kudryashov expansion method and the extended hyperbolic function (HF) method are used to construct novel abundant exact soliton solutions, including light, dark, and other special solutions that can be directly evaluated. These newly formed soliton solutions acquired here lead one to ask whether the analytical approach could be extended to deal with other nonlinear evolution equations with fractional space–time derivatives arising in engineering physics and nonlinear sciences. It is noted that the newly proposed methods’ performance is most reliable and efficient, and they will be used to construct new generalized expressions of exact closed-form solutions for any other NPDEs of fractional order.


2018 ◽  
Vol 22 ◽  
pp. 01056 ◽  
Author(s):  
Seyma Tuluce Demiray ◽  
Hasan Bulut

In this paper, generalized Kudryashov method (GKM) is used to find the exact solutions of (1+1) dimensional nonlinear Ostrovsky equation and (4+1) dimensional Fokas equation. Firstly, we get dark and bright soliton solutions of these equations using GKM. Then, we remark the results we found using this method.


Sign in / Sign up

Export Citation Format

Share Document