Transmissive 2-bit anisotropic coding metasurface

2022 ◽  
Author(s):  
Pengtao Lai ◽  
Zenglin Li ◽  
Wei Wang ◽  
Jia Qu ◽  
Liang Wei Wu ◽  
...  

Abstract Coding metasurfaces have attracted tremendous interests due to unique capabilities of manipulating electromagnetic wave. However, archiving transmissive coding metasurface is still challenging. Here we propose a transmissive anisotropic coding metasurface that enables the independent control of two orthogonal polarizations. The polarization beam splitter and the OAM generator have been studied as typical applications of anisotropic 2-bit coding metasurface. The simulated far field patterns illustrate that the x and y polarized electromagnetic waves are deflected into two different directions, respectively. The anisotropic coding metasurface has been experimentally verified to realize an orbital angular momentum (OAM) beam with l = 2 of right-handed polarized wave, resulting from both contributions from linear-to-circular polarization conversion and the phase profile modulation. This work is beneficial to enrich the polarization manipulation field and develop transmissive coding metasurfaces.

Research ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Jianchun Xu ◽  
Ke Bi ◽  
Ru Zhang ◽  
Yanan Hao ◽  
Chuwen Lan ◽  
...  

Electromagnetic waves carrying an orbital angular momentum (OAM) are of great interest. However, most OAM antennas present disadvantages such as a complicated structure, low efficiency, and large divergence angle, which prevents their practical applications. So far, there are few papers and research focuses on the problem of the divergence angle. Herein, a metasurface antenna is proposed to obtain the OAM beams with a small divergence angle. The circular arrangement and phase gradient were used to simplify the structure of the metasurface and obtain the small divergence angle, respectively. The proposed metasurface antenna presents a high transmission coefficient and effectively decreases the divergence angle of the OAM beam. All the theoretical analyses and derivation calculations were validated by both simulations and experiments. This compact structure paves the way to generate OAM beams with a small divergence angle.


2017 ◽  
Vol 31 (23) ◽  
pp. 1750172 ◽  
Author(s):  
Dongzhi Fu ◽  
Hailong Zhou ◽  
Kaiwei Wang ◽  
Pei Zhang ◽  
Jianji Dong ◽  
...  

The simple and efficient measurement of the light orbital angular momentum (OAM) is essential to both the classical and quantum applications with vortex beams. Here, we study the diffraction pattern in the far field when a vortex beam passes through an arc slit and demonstrate experimentally that a light spot of the diffraction pattern has a displacement which is linear to the topological charge (TC) of the incident vortex beam. Based on this property, this method is capable of measuring both modulus and sign of TC of the vortex beam. Furthermore, this scheme allows identifying multiple OAM states simultaneously.


Sign in / Sign up

Export Citation Format

Share Document