scholarly journals Relic Density of Asymmetric Dark Matter with Sommerfeld enhancement

2020 ◽  
Author(s):  
Hoernisa Iminniyaz
2018 ◽  
Vol 70 (5) ◽  
pp. 602 ◽  
Author(s):  
Hoernisa Iminniyaz ◽  
Burhan Salai ◽  
Guo-Liang Lv

2016 ◽  
Vol 31 (07) ◽  
pp. 1650021 ◽  
Author(s):  
Shun-Zhi Wang ◽  
Hoernisa Iminniyaz ◽  
Mamatrishat Mamat

The relic abundance of asymmetric dark matter particles in the scalar-tensor model is analyzed in this paper. We extend the numerical and analytical calculations of the relic density of the asymmetric dark matter in the standard cosmological scenario to the nonstandard cosmological scenario. We focus on the scalar-tensor model. Hubble expansion rate is changed in the nonstandard cosmological scenario. This leaves its imprint on the relic density of dark matter particles. In this paper we investigate to what extent the asymmetric dark matter particle’s relic density is changed in the scalar-tensor model. We use the observed present day dark matter abundance to find the constraints on the parameter space in this model.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Soo-Min Choi ◽  
Hyun Min Lee ◽  
Bin Zhu

Abstract We consider a novel mechanism to realize exothermic dark matter with dark mesons in the limit of approximate flavor symmetry in a dark QCD. We introduce a local dark U(1)′ symmetry to communicate between dark mesons and the Standard Model via Z′ portal by partially gauging the dark flavor symmetry with flavor-dependent charges for cancelling chiral anomalies in the dark sector. After the dark local U(1)′ is broken spontaneously by the VEV of a dark Higgs, there appear small mass splittings between dark quarks, consequently, leading to small split masses for dark mesons, required to explain the electron recoil excess in XENON1T by the inelastic scattering between dark mesons and electron. We propose a concrete benchmark model for split dark mesons based on SU(3)L× SU(3)R/SU(3)V flavor symmetry and SU(Nc) color group and show that there exists a parameter space making a better fit to the XENON1T data with two correlated peaks from exothermic processes and satisfying the correct relic density, current experimental and theoretical constraints.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Andrzej Hryczuk ◽  
Maxim Laletin

Abstract We study a novel dark matter production mechanism based on the freeze-in through semi-production, i.e. the inverse semi-annihilation processes. A peculiar feature of this scenario is that the production rate is suppressed by a small initial abundance of dark matter and consequently creating the observed abundance requires much larger coupling values than for the usual freeze-in. We provide a concrete example model exhibiting such production mechanism and study it in detail, extending the standard formalism to include the evolution of dark matter temperature alongside its number density and discuss the importance of this improved treatment. Finally, we confront the relic density constraint with the limits and prospects for the dark matter indirect detection searches. We show that, even if it was never in full thermal equilibrium in the early Universe, dark matter could, nevertheless, have strong enough present-day annihilation cross section to lead to observable signals.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Lorenzo Calibbi ◽  
Francesco D’Eramo ◽  
Sam Junius ◽  
Laura Lopez-Honorez ◽  
Alberto Mariotti

Abstract Displaced vertices at colliders, arising from the production and decay of long-lived particles, probe dark matter candidates produced via freeze-in. If one assumes a standard cosmological history, these decays happen inside the detector only if the dark matter is very light because of the relic density constraint. Here, we argue how displaced events could very well point to freeze-in within a non-standard early universe history. Focusing on the cosmology of inflationary reheating, we explore the interplay between the reheating temperature and collider signatures for minimal freeze-in scenarios. Observing displaced events at the LHC would allow to set an upper bound on the reheating temperature and, in general, to gather indirect information on the early history of the universe.


2015 ◽  
Vol 115 (12) ◽  
Author(s):  
Isabel García García ◽  
Robert Lasenby ◽  
John March-Russell

2015 ◽  
Vol 2015 (03) ◽  
pp. 022-022 ◽  
Author(s):  
Giorgio Busoni ◽  
Andrea De Simone ◽  
Thomas Jacques ◽  
Enrico Morgante ◽  
Antonio Riotto
Keyword(s):  

2013 ◽  
Vol 2013 (08) ◽  
pp. 003-003 ◽  
Author(s):  
Graciela B Gelmini ◽  
Ji-Haeng Huh ◽  
Thomas Rehagen

Sign in / Sign up

Export Citation Format

Share Document