scholarly journals Segments of spiral arms of the Galaxy traced by classical Cepheids: effects of age heterogeneity

2020 ◽  
Vol 20 (12) ◽  
pp. 209
Author(s):  
Angelina V. Veselova ◽  
Igor’ I. Nikiforov
Science ◽  
2021 ◽  
pp. eabe9680
Author(s):  
Takafumi Tsukui ◽  
Satoru Iguchi

Spiral galaxies have distinct internal structures including a stellar bulge, disk and spiral arms. It is unknown when in cosmic history these structures formed. We analyze observations of BRI 1335–0417, an intensely star-forming galaxy in the distant Universe, at redshift 4.41. The [C ii] gas kinematics show a steep velocity rise near the galaxy center and have a two-armed spiral morphology, which extends from about 2 to 5 kiloparsecs in radius. We interpret these features as due to a central compact structure, such as a bulge; a rotating gas disk; and either spiral arms or tidal tails. These features had formed within 1.4 billion years after the Big Bang, long before the peak of cosmic star formation.


2020 ◽  
Vol 900 (2) ◽  
pp. 132
Author(s):  
Jorge L. Pineda ◽  
Jürgen Stutzki ◽  
Christof Buchbender ◽  
Jin Koda ◽  
Christian Fischer ◽  
...  
Keyword(s):  

1970 ◽  
Vol 38 ◽  
pp. 189-198 ◽  
Author(s):  
S. W. McCuskey

Aside from the well-known spiral arm tracers such as the OB associations, young galactic clusters, WR stars and possibly the long-period classical cepheids, the more common stars in the neighborhood of the sun within 2 kpc show little or no relationship to the local spiral structure of the galaxy.


2003 ◽  
Vol 582 (1) ◽  
pp. 230-245 ◽  
Author(s):  
Barbara Pichardo ◽  
Marco Martos ◽  
Edmundo Moreno ◽  
Julia Espresate

1990 ◽  
Vol 140 ◽  
pp. 54-54
Author(s):  
R.R. Andreassian ◽  
A.N. Makarov

The present paper is devoted to a study of the magnetic field configuration of our Galaxy based on Faraday rotation measures (RM) of 185 pulsars and 802 extragalactic radio sources. RM data of pulsars located near the plane of the Galaxy are used for the study of magnetic fields in neighbouring spiral arms. For the distribution of spiral arms the well-known model of Georgelin and Georgelin (1976) is used. The calculations show (for details see Andreassian and Makarov, 1987, 1989) that in the Perseus spiral arm and the local Orion arm the magnetic fields have approximately the same directions (lo;bo) ≈ (80°;0°), while in the Sagittarius-Carina arm the magnetic field has an opposite direction.


2012 ◽  
Vol 426 (1) ◽  
pp. 701-707 ◽  
Author(s):  
T. J. T. Moore ◽  
J. S. Urquhart ◽  
L. K. Morgan ◽  
M. A. Thompson

2007 ◽  
Vol 134 (6) ◽  
pp. 2252-2271 ◽  
Author(s):  
S. T. Strasser ◽  
J. M. Dickey ◽  
A. R. Taylor ◽  
A. I. Boothroyd ◽  
B. M. Gaensler ◽  
...  
Keyword(s):  

2011 ◽  
Vol 28 (3) ◽  
pp. 271-279 ◽  
Author(s):  
N. Santiago-Figueroa ◽  
M. E. Putman ◽  
J. Werk ◽  
G. R. Meurer ◽  
E. Ryan-Weber

AbstractWe present VLA 21-cm observations of the spiral galaxy ESO 481-G017 to determine the nature of remote star formation traced by an Hii region found 43 kpc and ∼800 km s−1 from the galaxy center (in projection). ESO 481-G017 is found to have a 120 kpc Hi disk with a mass of 1.2 × 1010M⊙ and UV GALEX images reveal spiral arms extending into the gaseous disk. Two dwarf galaxies with Hi masses close to 108M⊙ are detected at distances of ∼200 kpc from ESO 481-G017 and a Hi cloud with a mass of 6 × 107M⊙ is found near the position and velocity of the remote Hii region. The Hii region is somewhat offset from the Hi cloud spatially and there is no link to ESO 481-G017 or the dwarf galaxies. We consider several scenarios for the origin of the cloud and Hii region and find the most likely is a dwarf galaxy that is undergoing ram pressure stripping. The Hi mass of the cloud and Hi luminosity of the Hii region (1038.1 erg s−1) are consistent with dwarf galaxy properties, and the stripping can trigger the star formation as well as push the gas away from the stars.


2017 ◽  
Vol 12 (S330) ◽  
pp. 189-192 ◽  
Author(s):  
Sara Rezaei Kh. ◽  
Coryn A. L. Bailer-Jones ◽  
Morgan Fouesneau ◽  
Richard Hanson

AbstractWe present a model to map the 3D distribution of dust in the Milky Way. Although dust is just a tiny fraction of what comprises the Galaxy, it plays an important role in various processes. In recent years various maps of dust extinction have been produced, but we still lack a good knowledge of the dust distribution. Our presented approach leverages line-of-sight extinctions towards stars in the Galaxy at measured distances. Since extinction is proportional to the integral of the dust density towards a given star, it is possible to reconstruct the 3D distribution of dust by combining many lines-of-sight in a model accounting for the spatial correlation of the dust. Such a technique can be used to infer the most probable 3D distribution of dust in the Galaxy even in regions which have not been observed. This contribution provides one of the first maps which does not show the “fingers of God” effect. Furthermore, we show that expected high precision measurements of distances and extinctions offer the possibility of mapping the spiral arms in the Galaxy.


2020 ◽  
Vol 494 (1) ◽  
pp. 1134-1142
Author(s):  
Jacques P Vallée

ABSTRACT This study extends to the structure of the Galaxy. Our main goal is to focus on the first spiral arm beyond the Perseus arm, often called the Cygnus arm or the ‘Outer Norma’ arm, by appraising the distributions of the masers near the Cygnus arm. The method is to employ masers whose trigonometric distances were measured with accuracy. The maser data come from published literature – see column 8 in Table 1 here, having been obtained via the existing networks (US VLBA, the Japanese VERA, the European VLBI, and the Australian LBA). The new results for Cygnus are split in two groups: those located near a recent CO-fitted global model spiral arm and those congregating within an ‘interarm island’ located halfway between the Perseus arm and the Cygnus arm. Next, we compare this island with other similar interarm objects near other spiral arms. Thus, we delineate an interarm island (6 × 2 kpc) located between the two long spiral arms (Cygnus and Perseus arms); this is reminiscent of the small ‘Local Orion arm’ (4 × 2 kpc) found earlier between the Perseus and Sagittarius arms and of the old ‘Loop’ (2 × 0.5 kpc) found earlier between the Sagittarius and Scutum arms. Various arm models are compared, based on observational data (masers, H II regions, H I gas, young stars, CO 1–0 gas).


Sign in / Sign up

Export Citation Format

Share Document