Nonlinear Effects in Models of the Galaxy. I. Midplane Stellar Orbits in the Presence of Three‐dimensional Spiral Arms

2003 ◽  
Vol 582 (1) ◽  
pp. 230-245 ◽  
Author(s):  
Barbara Pichardo ◽  
Marco Martos ◽  
Edmundo Moreno ◽  
Julia Espresate
Science ◽  
2021 ◽  
pp. eabe9680
Author(s):  
Takafumi Tsukui ◽  
Satoru Iguchi

Spiral galaxies have distinct internal structures including a stellar bulge, disk and spiral arms. It is unknown when in cosmic history these structures formed. We analyze observations of BRI 1335–0417, an intensely star-forming galaxy in the distant Universe, at redshift 4.41. The [C ii] gas kinematics show a steep velocity rise near the galaxy center and have a two-armed spiral morphology, which extends from about 2 to 5 kiloparsecs in radius. We interpret these features as due to a central compact structure, such as a bulge; a rotating gas disk; and either spiral arms or tidal tails. These features had formed within 1.4 billion years after the Big Bang, long before the peak of cosmic star formation.


1996 ◽  
Vol 169 ◽  
pp. 669-680
Author(s):  
F.D.A. Hartwick

The spatial distribution of the outlying satellites of the Galaxy has been determined by fitting a three dimensional surface to the positions of 10 companion galaxies and 13 distant globular clusters. Both groups show a highly flattened distribution whose minor axes are aligned to within ∼ 5°. The combined group of 23 objects shows a triaxial distribution with semimajor axis extending ∼ 400 kpc. The minor axis is inclined at ∼ 76° to the Galactic poles. There is a suggestion of a nested hierarchy consisting of satellite galaxies, globular clusters, and distant halo field stars, in order of decreasing spatial extension.


2017 ◽  
Vol 598 ◽  
pp. A125 ◽  
Author(s):  
S. Rezaei Kh. ◽  
C. A. L. Bailer-Jones ◽  
R. J. Hanson ◽  
M. Fouesneau

1972 ◽  
Vol 1 (13) ◽  
pp. 146
Author(s):  
Joseph L. Hammack ◽  
Frederic Raichlen

A linear theory is presented for waves generated by an arbitrary bed deformation {in space and time) for a two-dimensional and a three -dimensional fluid domain of uniform depth. The resulting wave profile near the source is computed for both the two and three-dimensional models for a specific class of bed deformations; experimental results are presented for the two-dimensional model. The growth of nonlinear effects during wave propagation in an ocean of uniform depth and the corresponding limitations of the linear theory are investigated. A strategy is presented for determining wave behavior at large distances from the source where linear and nonlinear effects are of equal magnitude. The strategy is based on a matching technique which employs the linear theory in its region of applicability and an equation similar to that of Korteweg and deVries (KdV) in the region where nonlinearities are equal in magnitude to frequency dispersion. Comparison of the theoretical computations with the experimental results indicates that an equation of the KdV type is the proper model of wave behavior at large distances from the source region.


2020 ◽  
Vol 900 (2) ◽  
pp. 132
Author(s):  
Jorge L. Pineda ◽  
Jürgen Stutzki ◽  
Christof Buchbender ◽  
Jin Koda ◽  
Christian Fischer ◽  
...  
Keyword(s):  

1993 ◽  
Vol 153 ◽  
pp. 369-370
Author(s):  
L.P. Ossipkov ◽  
S.A. Kutuzov

The study of prevalent orbits in galactic subsystems can help us understand galactic structure and clarify its history. The classical analysis of flat orbits and metallicities of old stars led Eggen et al. (1962) to formulate the rapid collapse of the primordial Galaxy. On the other side Yoshii & Saio (1979) studied three-dimensional orbits that separate in spherical coordinates. They found the Galaxy contracted quasi-stationary after the formation of halo objects. Here we shall briefly discuss the results of numerical orbit calculations (with Merson's method) for selected galactic subsystems. The axially symmetrical two-component model of the Galaxy (Kutuzov, Ossipkov 1989) was adopted. One-component models (Barkhatova et al. 1987, Kutuzov 1988) were used also but no significant difference in orbit elements was found (Kutuzov & Ossipkov 1992). Pericenter and apocenter distances, Rp and Ra, and the maximal height of objects over the galactic plane, zm, were used as orbit elements as well as dimensionless quantities e = (Ra — Rp)/(Ra + Rp) (eccentricity) and c = 2zm/(Ra — Rp) (the flatness of box filled by orbit projection on the meridional plane).


2019 ◽  
Vol 624 ◽  
pp. A37 ◽  
Author(s):  
Ewa L. Łokas

Strong galactic bars produced in simulations tend to undergo a period of buckling instability that weakens and thickens them and forms a boxy/peanut structure in their central parts. This theoretical prediction has been confirmed by identifying such morphologies in real galaxies. The nature and origin of this instability, however, remain poorly understood with some studies claiming that it is due to fire-hose instability while others relating it to vertical instability of stellar orbits supporting the bar. One of the channels for the formation of galactic bars is via the interaction of disky galaxies with perturbers of significant mass. Tidally induced bars offer a unique possibility of studying buckling instability because their formation can be controlled by changing the strength of the interaction while keeping the initial structure of the galaxy the same. We used a set of four simulations of flyby interactions where a galaxy on a prograde orbit forms a bar, which is stronger for stronger tidal forces. We studied their buckling by calculating different kinematic signatures, including profiles of the mean velocity in the vertical direction, as well as distortions of the bars out of the disk plane. Although our two strongest bars buckle most strongly, there is no direct relation between the ratio of vertical to horizontal velocity dispersion and the bar’s susceptibility to buckling, as required by the fire-hose instability interpretation. While our weakest bar buckles, a stronger one does not, its dispersion ratio remains low, and it grows to become the strongest of all at the end of evolution. Instead, we find that during buckling the resonance between the vertical and radial orbital frequencies becomes wide and therefore able to modify stellar orbits over a significant range of radii. We conclude that vertical orbital instability is the more plausible explanation for the origin of buckling.


2019 ◽  
Vol 629 ◽  
pp. A52 ◽  
Author(s):  
Ewa L. Łokas

Using N-body simulations we study the buckling instability in a galactic bar forming in a Milky Way-like galaxy. The galaxy is initially composed of an axisymmetric, exponential stellar disk embedded in a spherical dark matter halo. The parameters of the model are chosen so that the galaxy is mildly unstable to bar formation and the evolution is followed for 10 Gyr. A strong bar forms slowly over the first few gigayears and buckles after 4.5 Gyr from the start of the simulation becoming much weaker and developing a pronounced boxy/peanut shape. We measure the properties of the bar at the time of buckling in terms of the mean acceleration, velocity, and distortion in the vertical direction. The maps of these quantities in face-on projections reveal characteristic quadrupole patterns which wind up over a short timescale. We also detect a secondary buckling event lasting much longer and occurring only in the outer part of the bar. We then study the orbital structure of the bar in periods before and after the first buckling. We find that most of the buckling orbits originate from x1 orbits supporting the bar. During buckling the ratio of the vertical to horizontal frequency of the stellar orbits decreases dramatically and after buckling the orbits obey a very tight relation between the vertical and circular frequency: 3ν = 4Ω. We propose that buckling is initiated by the vertical resonance of the x1 orbits creating the initial distortion of the bar that later evolves as kinematic bending waves.


Sign in / Sign up

Export Citation Format

Share Document