scholarly journals New constraint of the Hubble constant by proper motions of radio components observed in AGN twin-jets

2021 ◽  
Vol 21 (10) ◽  
pp. 261
Author(s):  
Wei-Jian Lu ◽  
Yi-Ping Qin

Abstract As the advent of precision cosmology, the Hubble constant (H 0) inferred from the Lambda Cold Dark Matter fit to the Cosmic Microwave Background data is increasingly in tension with the measurements from the local distance ladder. To approach its real value, we need more independent methods to measure, or to make constraint of, the Hubble constant. In this paper, we apply a plain method, which is merely based on the Friedman-Lemaître-Robertson-Walker cosmology together with geometrical relations, to constrain the Hubble constant by proper motions of radio components observed in AGN twin-jets. Under the assumption that the ultimate ejection strengths in both sides of the twin-jet concerned are intrinsically the same, we obtain a lower limit of H 0,min = 51.5 ± 2.3 km s−1 Mpc−1 from the measured maximum proper motions of the radio components observed in the twin-jet of NGC 1052.

2019 ◽  
Vol 490 (1) ◽  
pp. 1406-1414 ◽  
Author(s):  
Suresh Kumar ◽  
Rafael C Nunes ◽  
Santosh Kumar Yadav

ABSTRACT Dark matter (DM) as a pressureless perfect fluid provides a good fit of the standard Λ cold dark matter (ΛCDM) model to the astrophysical and cosmological data. In this paper, we investigate two extended properties of DM: a possible time dependence of the equation of state of DM via Chevallier–Polarski–Linder parametrization, wdm = wdm0 + wdm1(1 − a), and the constant non-null sound speed $\hat{c}^2_{\rm s,dm}$. We analyse these DM properties on top of the base ΛCDM model by using the data from Planck cosmic microwave background (CMB) temperature and polarization anisotropy, baryonic acoustic oscillations (BAOs), and the local value of the Hubble constant from the Hubble Space Telescope (HST). We find new and robust constraints on the extended free parameters of DM. The most tight constraints are imposed by CMB+BAO data, where the three parameters wdm0, wdm1, and $\hat{c}^2_{\rm s,dm}$ are, respectively, constrained to be less than 1.43 × 10−3, 1.44 × 10−3, and 1.79 × 10−6 at 95 per cent CL. All the extended parameters of DM show consistency with zero at 95 per cent CL, indicating no evidence beyond the CDM paradigm. We notice that the extended properties of DM significantly affect several parameters of the base ΛCDM model. In particular, in all the analyses performed here, we find significantly larger mean values of H0 and lower mean values of σ8 in comparison to the base ΛCDM model. Thus, the well-known H0 and σ8 tensions might be reconciled in the presence of extended DM parameters within the ΛCDM framework. Also, we estimate the warmness of DM particles as well as its mass scale, and find a lower bound: ∼500 eV from our analyses.


2020 ◽  
Vol 494 (2) ◽  
pp. 2183-2190
Author(s):  
Stéphane Fay

ABSTRACT We examine the possibility that Universe expansion be made of some Λ-cold dark matter (ΛCDM) expansions repeating periodically, separated by some inflation- and radiation-dominated phases. This so-called ΛCDM periodic cosmology is motivated by the possibility that inflation and the present phase of accelerated expansion be due to the same dark energy. Then, in a phase space showing the variation of matter density parameter Ωm with respect to this of the radiation Ωr, the curve Ωm(Ωr) looks like a closed trajectory that Universe could run through forever. In this case, the end of the expansion acceleration of the ΛCDM phase is the beginning of a new inflation phase. We show that such a scenario implies the coupling of matter and/or radiation to dark energy. We consider the simplest of these ΛCDM periodic models i.e. a vacuum energy coupled to radiation. From matter domination phase to today, it behaves like a ΛCDM model, then followed by an inflation phase. But a sudden and fast decay of the dark energy into radiation periodically ends the expansion acceleration. This leads to a radiation-dominated Universe preceding a new ΛCDM type expansion. The model is constrained with Markov Chain Monte Carlo simulations using supernovae, Hubble expansion, Baryon Acoustic Oscillations (BAO), and cosmic microwave background data and fits the data as well as the ΛCDM one.


2005 ◽  
Vol 201 ◽  
pp. 271-281
Author(s):  
Masataka. Fukugita

The determinations of the mass density parameter Ω0 are examined with a particular emphasis given to the new cosmic microwave background (CMB) experiments. It is shown that the Ω0 and the Hubble constant H0 from CMB are quite consistent with those from other observations with the aid of the hierarchical structure formation models based on cold dark matter dominance with the cosmological constant that makes the universe flat. The concordance value of Ω0 is 0.25-0.45.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Steffen Hahn ◽  
Ralf Hofmann

Presently, we are facing a 3σ tension in the most basic cosmological parameter, the Hubble constant H0. This tension arises when fitting the Lambda-cold-dark-matter model (ΛCDM) to the high-precision temperature-temperature (TT) power spectrum of the Cosmic Microwave Background (CMB) and to local cosmological observations. We propose a resolution of this problem by postulating that the thermal photon gas of the CMB obeys an SU(2) rather than U(1) gauge principle, suggesting a high-z cosmological model which is void of dark-matter. Observationally, we rely on precise low-frequency intensity measurements in the CMB spectrum and on a recent model independent (low-z) extraction of the relation between the comoving sound horizon rs at the end of the baryon drag epoch and H0 (rsH0=const). We point out that the commonly employed condition for baryon-velocity freeze-out is imprecise, judged by a careful inspection of the formal solution to the associated Euler equation. As a consequence, the above-mentioned 3σ tension actually transforms into a 5σ discrepancy. To make contact with successful low-z  ΛCDM cosmology we propose an interpolation based on percolated/depercolated vortices of a Planck-scale axion condensate. For a first consistency test of such an all-z model we compute the angular scale of the sound horizon at photon decoupling.


1987 ◽  
Vol 124 ◽  
pp. 415-432
Author(s):  
Avishai Dekel

Although some theories, such as that of cold dark matter, are quite successful in explaining certain aspects of the formation of structure, we seem not to approach a satisfactory theory which can easily account for all the observational constraints on all scales. Most difficult to explain are the indicated clustering of clusters and bulk velocities on very large scales, when considered together with the structure on galactic scales and the isotropy of the microwave background. If these observations are correct, the only scenarios that can work are hybrids of certain sorts, which involve somewhat ad hoc choices of parameters; they are not the theories that would have emerged naturally from first principles, and they do not satisfy the criteria of simplicity and elegancy. I will discuss the currently popular scenarios and the apparent difficulties they face.


Sign in / Sign up

Export Citation Format

Share Document