scholarly journals Long-term V (RI) c CCD photometry of pre-main-sequence stars in the association Cepheus OB3*

2021 ◽  
Vol 21 (8) ◽  
pp. 192
Author(s):  
Sunay Ibryamov ◽  
Gabriela Zidarova ◽  
Evgeni Semkov ◽  
Stoyanka Peneva
2019 ◽  
Vol 489 (4) ◽  
pp. 5513-5529 ◽  
Author(s):  
Kaiming Cui ◽  
Jifeng Liu ◽  
Shuhong Yang ◽  
Qing Gao ◽  
Huiqin Yang ◽  
...  

ABSTRACT Stellar rotation plays a key role in stellar activity. The rotation period could be detected through light curve variations caused by star-spots. Kepler provides two types of light curves: one is the Pre-search Data Conditioning (PDC) light curves, and the other is the Simple Aperture Photometer (SAP) light curves. Compared with the PDC light curves, the SAP light curves keep the long-term trend, relatively suitable for searches of long-period signals. However, SAP data are inflicted by some artefacts such as quarterly rolls and instrumental errors, making it difficult to find the physical periods in the SAP light curves. We explore a systematic approach based on the light curve pre-processing, period detection, and candidate selection. We also develop a simulated light curve test to estimate our detection limits for the SAP-like LCs. After applying our method to the raw SAP light curves, we found more than 1000 main-sequence stars with periods longer than 30 d; 165 are newly discovered. Considering the potential flaw of the SAP, we also inspect the newly found objects with photometry methods, and most of our periodical signals are confirmed.


2019 ◽  
Vol 625 ◽  
pp. A71 ◽  
Author(s):  
E. L. Rickman ◽  
D. Ségransan ◽  
M. Marmier ◽  
S. Udry ◽  
F. Bouchy ◽  
...  

Context. Since 1998, a planet-search around main sequence stars within 50 pc in the southern hemisphere has been underway with the CORALIE spectrograph at La Silla Observatory. Aims. With an observing time span of more than 20 yr, the CORALIE survey is able to detect long-term trends in data with masses and separations large enough to select ideal targets for direct imaging. Detecting these giant companion candidates will allow us to start bridging the gap between radial-velocity-detected exoplanets and directly imaged planets and brown dwarfs. Methods. Long-term precise Doppler measurements with the CORALIE spectrograph reveal radial-velocity signatures of massive planetary companions and brown dwarfs on long-period orbits. Results. In this paper, we report the discovery of new companions orbiting HD 181234, HD 13724, HD 25015, HD 92987 and HD 50499. We also report updated orbital parameters for HD 50499b, HD 92788b and HD 98649b. In addition, we confirm the recent detection of HD 92788c. The newly reported companions span a period range of 15.6–40.4 yr and a mass domain of 2.93–26.77 MJup, the latter of which straddles the nominal boundary between planets and brown dwarfs. Conclusions. We report the detection of five new companions and updated parameters of four known extrasolar planets. We identify at least some of these companions to be promising candidates for imaging and further characterisation.


1995 ◽  
Vol 148 ◽  
pp. 124-128
Author(s):  
Ian R. Parry ◽  
Fred G. Watson ◽  
B. Esperanza Carrasco

AbstractWe describe an instrumental configuration for detecting large gas-giant planets orbiting main sequence stars via the small drop in stellar brightness that occurs when the planet transits the stellar disk. Our proposed scheme involves the long-term monitoring of the light-curves of tens of thousands of stars using a Schmidt telescope coupled to a CCD via a bundle of 10,000 optical fibres. Using an existing theoretical model of planetary system formation we calculate a detection rate of 14 transits per year for our proposed system.


2019 ◽  
pp. 39-53
Author(s):  
E.H. Semkov ◽  
S.I. Ibryamov ◽  
S.P. Peneva

We present results from long-term optical photometric and spectroscopic observations of five pre-main sequence stars, located in the vicinity of the bright nebula NGC 7129. We obtained UBVRI photometric observations in the field centered on the star V391 Cep, north-west of the bright nebula NGC 7129. Our multicolor CCD observations spanned the period from February 1998 to November 2016. At the time of our photometric monitoring, a total of thirteen medium-resolution optical spectra of the stars were obtained. The results from our photometric study show that all stars exhibit strong variability in all optical passbands. Long-term light curves of the five stars indicate the typical classical T Tauri star variations in brightness with large amplitudes. We did not find any reliable periodicity in the brightness variations of all five stars. The results from spectral observations showed that all studied stars can be classified as classical T Tauri stars with rich emission line spectra and strong variability in profiles and intensity of emission lines.


1966 ◽  
Vol 24 ◽  
pp. 40-43
Author(s):  
O. C. Wilson ◽  
A. Skumanich

Evidence previously presented by one of the authors (1) suggests strongly that chromospheric activity decreases with age in main sequence stars. This tentative conclusion rests principally upon a comparison of the members of large clusters (Hyades, Praesepe, Pleiades) with non-cluster objects in the general field, including the Sun. It is at least conceivable, however, that cluster and non-cluster stars might differ in some fundamental fashion which could influence the degree of chromospheric activity, and that the observed differences in chromospheric activity would then be attributable to the circumstances of stellar origin rather than to age.


1976 ◽  
Vol 32 ◽  
pp. 49-55 ◽  
Author(s):  
F.A. Catalano ◽  
G. Strazzulla

SummaryFrom the analysis of the observational data of about 100 Ap stars, the radii have been computed under the assumption that Ap are main sequence stars. Radii range from 1.4 to 4.9 solar units. These values are all compatible with the Deutsch's period versus line-width relation.


1998 ◽  
Vol 116 (4) ◽  
pp. 1801-1809 ◽  
Author(s):  
Antonio J. Delgado ◽  
Emilio J. Alfaro ◽  
André Moitinho ◽  
José Franco

1998 ◽  
Vol 501 (1) ◽  
pp. 192-206 ◽  
Author(s):  
Rosa Izela Diaz‐Miller ◽  
Jose Franco ◽  
Steven N. Shore

1998 ◽  
Vol 11 (1) ◽  
pp. 565-565
Author(s):  
G. Cayrel de Strobel ◽  
R. Cayrel ◽  
Y. Lebreton

After having studied in great detail the observational HR diagram (log Teff, Mbol) composed by 40 main sequence stars of the Hyades (Perryman et al.,1997, A&A., in press), we have tried to apply the same method to the observational main sequences of the three next nearest open clusters: Coma Berenices, the Pleiades, and Praesepe. This method consists in comparing the observational main sequence of the clusters with a grid of theoretical ZAMSs. The stars composing the observational main sequences had to have reliable absolute bolometric magnitudes, coming all from individual Hipparcos parallaxes, precise bolometric corrections, effective temperatures and metal abundances from high resolution detailed spectroscopic analyses. If we assume, following the work by Fernandez et al. (1996, A&A,311,127), that the mixing-lenth parameter is solar, the position of a theoretical ZAMS, in the (log Teff, Mbol) plane, computed with given input physics, only depends on two free parameters: the He content Y by mass, and the metallicity Z by mass. If effective temperature and metallicity of the constituting stars of the 4 clusters are previously known by means of detailed analyses, one can deduce their helium abundances by means of an appropriate grid of theoretical ZAMS’s. The comparison between the empirical (log Teff, Mbol) main sequence of the Hyades and the computed ZAMS corresponding to the observed metallicity Z of the Hyades (Z= 0.0240 ± 0.0085) gives a He abundance for the Hyades, Y= 0.26 ± 0.02. Our interpretation, concerning the observational position of the main sequence of the three nearest clusters after the Hyades, is still under way and appears to be greatly more difficult than for the Hyades. For the moment we can say that: ‒ The 15 dwarfs analysed in detailed in Coma have a solar metallicity: [Fe/H] = -0.05 ± 0.06. However, their observational main sequence fit better with the Hyades ZAMS. ‒ The mean metallicity of 13 Pleiades dwarfs analysed in detail is solar. A metal deficient and He normal ZAMS would fit better. But, a warning for absorption in the Pleiades has to be recalled. ‒ The upper main sequence of Praesepe, (the more distant cluster: 180 pc) composed by 11 stars, analysed in detail, is the one which has the best fit with the Hyades ZAMS. The deduced ‘turnoff age’ of the cluster is slightly higher than that of the Hyades: 0.8 Gyr instead of 0.63 Gyr.


Sign in / Sign up

Export Citation Format

Share Document