2D Hall-MHD investigation of magnetic pressure balance during the merging start-up in spherical tokamaks

2021 ◽  
Author(s):  
Tara Ahmadi ◽  
Yasushi Ono
2021 ◽  
Vol 923 (2) ◽  
pp. 158
Author(s):  
David Ruffolo ◽  
Nawin Ngampoopun ◽  
Yash R. Bhora ◽  
Panisara Thepthong ◽  
Peera Pongkitiwanichakul ◽  
...  

Abstract The Parker Solar Probe (PSP) spacecraft is performing the first in situ exploration of the solar wind within 0.2 au of the Sun. Initial observations confirmed the Alfvénic nature of aligned fluctuations of the magnetic field B and velocity V in solar wind plasma close to the Sun, in domains of nearly constant magnetic field magnitude ∣ B ∣, i.e., approximate magnetic pressure balance. Such domains are interrupted by particularly strong fluctuations, including but not limited to radial field (polarity) reversals, known as switchbacks. It has been proposed that nonlinear Kelvin–Helmholtz instabilities form near magnetic boundaries in the nascent solar wind leading to extensive shear-driven dynamics, strong turbulent fluctuations including switchbacks, and mixing layers that involve domains of approximate magnetic pressure balance. In this work we identify and analyze various aspects of such domains using data from the first five PSP solar encounters. The filling fraction of domains, a measure of Alfvénicity, varies from median values of 90% within 0.2 au to 38% outside 0.9 au, with strong fluctuations. We find an inverse association between the mean domain duration and plasma β. We examine whether the mean domain duration is also related to the crossing time of spatial structures frozen into the solar wind flow for extreme cases of the aspect ratio. Our results are inconsistent with long, thin domains aligned along the radial or Parker spiral direction, and compatible with isotropic domains, which is consistent with prior observations of isotropic density fluctuations or flocculae in the solar wind.


Author(s):  
Zdeněk Němeček ◽  
Kostiantyn Grygorov ◽  
Jana Šafránková ◽  
Jiří Šimůnek ◽  
Gilbert Pi

Magnetic pressure inside the magnetopause is usually balanced with a sum of thermal plasma and magnetic pressures on the magnetosheath side. However, observations reveal that the magnetosheath magnetic field can be frequently larger than that in the magnetosphere (inverse magnetic field gradient across the magnetopause), and thus, the enhanced pressure from the magnetosheath side seems to be uncompensated. Such events are rare in the subsolar region, but their occurrence rate increases toward flanks. The analysis, based on statistical processing of about 35,000 THEMIS magnetopause crossings collected in the course of the years 2007–2017, shows that these events are more frequently observed under enhanced geomagnetic activity that is connected with a strong southward IMF. Case studies reveal that such a state of the magnetopause boundary layers can persist for several hours. This study discusses conditions and mechanisms keeping the pressure balance across the magnetopause under these conditions.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Kairong Hong ◽  
Fengyuan Li ◽  
Zhenjian Zhou ◽  
Feng Li ◽  
Xunlin Zhu

The prediction of cutterhead torque of earth pressure balance (EPB) shield machine is mainly studied. First, the idea of shield tunneling stage division is proposed. The process of shield tunneling from start to stop (or pause) is divided into start-up and stationary driving stages. Using the change point detection method based on linear regression, the separation points between start-up stage and stationary driving stage are identified from the original construction data, and the datasets of the two stages are extracted, respectively. Then, for the start-up stage, the linear regression method is suggested for the cutterhead torque prediction, since there is a strong linear correlation between the key parameters such as the cutterhead torque and the thrust force. Meanwhile, for the stationary driving stage, considering the fact that the key parameters vary smoothly and show obvious inertia, the long short-term memory (LSTM) network method can be used to establish the relationship model between cutterhead torque and other key parameters, such as the thrust force. Through the test experiments of construction data in Zhengzhou, Luoyang, and Dalian shield projects, the results show that the proposed segmented modeling method possesses good adaptability and the cutterhead torque prediction model has high prediction accuracy.


2015 ◽  
Vol 81 (6) ◽  
Author(s):  
M. Gedalin

Upon crossing the shock front, ions begin to gyrate. The ion distribution just behind the ramp is manifestly non-gyrotropic. The gyration of the ion distribution as a whole results in spatially periodic oscillations of the ion pressure. The magnetic pressure must oscillate in the opposite phase to ensure the maintenance of the pressure balance throughout the shock front. The ion non-gyrotropy and the pressure oscillations gradually damp due to the collisionless gyrophase mixing. The rate of this relaxation depends on the basic shock parameters. The most influential are the angle between the shock normal and the magnetic field, the upstream ion temperature and the magnetic compression.


Sign in / Sign up

Export Citation Format

Share Document