Cross-code comparison of the edge codes SOLPS-ITER, SOLEDGE2D and UEDGE in modelling a low-power scenario in the DTT

2021 ◽  
Author(s):  
Matteo Moscheni ◽  
Carlo Meineri ◽  
Michael Robert Knox Wigram ◽  
Claudio Carati ◽  
Eliana De Marchi ◽  
...  

Abstract As reactor-level nuclear fusion experiments are approaching, a solution to the power exhaust issue in future fusion reactors is still missing. The maximum steady-state heat load that can be exhausted by the present technology is around 10 MW/m2. Different promising strategies aiming at successfully managing the power exhaust in reactor-relevant conditions such that the limit is not exceeded are under investigation, and will be tested in the Divertor Tokamak Test (DTT) experiment. Meanwhile, the design of tokamaks beyond the DTT, e.g. EU-DEMO/ARC, is progressing at a high pace. A strategy to work around the present lack of reactor-relevant data consists of exploiting modelling to reduce the uncertainty in the extrapolation in the design phase. Different simulation tools, with their own capabilities and limitations, can be employed for this purpose. In this work, we compare SOLPS-ITER, SOLEDGE2D and UEDGE, three state-of-the-art edge codes heavily used in power exhaust studies, in modelling the same DTT low-power, pure-deuterium, narrow heat-flux-width scenario. This simplified, although still reactor-relevant, testbed eases the cross-comparison and the interpretation of the code predictions, to identify areas where results differ and develop understanding of the underlying causes. Under the conditions investigated, the codes show encouraging agreement in terms of key parameters at both targets, including peak parallel heat flux (1-45%), ion temperature (2-19%), and inner target plasma density (1-23%) when run with similar input. However, strong disagreement is observed for the remaining quantities, from 30% at outer mid-plane up to a factor 4-5 at the targets. The results primarily reflect limitations of the codes: the SOLPS-ITER plasma mesh not reaching the first wall, SOLEDGE2D not including ion-neutral temperature equilibration, and UEDGE enforcing a common ion-neutral temperature. Potential improvements that could help enhance the accuracy of the code models for future applications are also discussed.

2005 ◽  
Vol 9 (1) ◽  
pp. 111-130 ◽  
Author(s):  
Dubravka Mijuca ◽  
Ana Ziberna ◽  
Bojan Medjo

A new original primal-mixed finite element approach and related hexahedral finite element HC:T/q for the analysis of behavior of solid bodies under thermal loading is presented. The essential contributions of the present approach is the treatment of temperature and heat flux as fundamental variables that are simultaneously calculated, as well as capability to introduce initial and prescribed temperature and heal flux. In order to minimize accuracy error and enable introductions afflux constraints, the tensorial character of the present finite element equations is fully respected. The proposed finite element is subjected to some standard benchmark tests in order to test convergence of the results, which enlighten the effectiveness and reliability of the approach proposed.


Author(s):  
Aysenur Toptan ◽  
Nathan W. Porter ◽  
Jason D. Hales ◽  
Benjamin W. Spencer ◽  
Martin Pilch ◽  
...  

Abstract When establishing the pedigree of a simulation tool, code verification is used to ensure that the implemented numerical algorithm is a faithful representation of its underlying mathematical model. During this process, numerical results on various meshes are systematically compared to a reference analytic solution. The selection of analytic solutions can be a laborious process, as it is difficult to establish adequate code confidence without performing redundant work. Here, we address this issue by applying a physics-based process that establishes a set of reference problems. In this process, code simulation options are categorized and systematically tested, which ensures that gaps in testing are easily identified and addressed. The resulting problems are primarily intended for code verification analysis but may also be useful for comparison to other simulation codes, troubleshooting activities, or training exercises. The process is used to select fifteen code verification problems relevant for the one-dimensional steady-state heat conduction equation. These problems are applicable to a wide variety of simulation tools, but, in this work, a demonstration is performed using the finite element-based nuclear fuel performance code BISON. Convergence to the analytic solution at the theoretical rate is quantified for a selection of the problems, which establishes a baseline pedigree for the code. Not only can this standard set of conduction solutions be used for verification of other codes, but also the physics-based process for selecting problems can be utilized to quantify and expand testing for any simulation tool.


1996 ◽  
Vol 118 (4) ◽  
pp. 850-856 ◽  
Author(s):  
B. G. Wiedner ◽  
C. Camci

The present study focuses on the high-resolution determination of local heat flux distributions encountered in forced convection heat transfer studies. The specific method results in an uncertainty level less than 4 percent of the heat transfer coefficient on surfaces with arbitrarily defined geometric boundaries. Heat transfer surfaces constructed for use in steady-state techniques typically use rectangular thin foil electric heaters to generate a constant heat flux boundary condition. There are also past studies dealing with geometrically complex heating elements. Past studies have either omitted the nonuniform heat flux regions or applied correctional techniques that are approximate. The current study combines electric field theory and a finite element method to solve directly for a nonuniform surface heat flux distribution due to the specific shape of the heater boundary. Heat generation per unit volume of the surface heater element in the form of local Joule heating is accurately calculated using a finite element technique. The technique is shown to be applicable to many complex convective heat transfer configurations. These configurations often have complex geometric boundaries such as turbine endwall platforms, surfaces disturbed by film cooling holes, blade tip sections, etc. A complete high-resolution steady-state heat transfer technique using liquid crystal thermography is presented for the endwall surface of a 90 deg turning duct. The inlet flow is fully turbulent with an inlet Re number of 360,000. The solution of the surface heat flux distribution is also demonstrated for a heat transfer surface that contains an array of discrete film cooling holes. The current method can easily be extended to any heat transfer surface that has arbitrarily prescribed boundaries.


2007 ◽  
Vol 51 (2T) ◽  
pp. 250-252 ◽  
Author(s):  
K. Kurihara ◽  
S. Kado ◽  
H. Matsuura ◽  
T. Shikama ◽  
Y. Iida ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document