steady state heat transfer
Recently Published Documents


TOTAL DOCUMENTS

265
(FIVE YEARS 41)

H-INDEX

24
(FIVE YEARS 1)

2021 ◽  
Vol 2093 (1) ◽  
pp. 012002
Author(s):  
Jiafang Song ◽  
Jiawei Xie ◽  
jiao Wang

Abstract This paper studies the measurement technology of heat transfer coefficient of building envelope, explores the main factors affecting the measurement of heat transfer coefficient, uses ANSYS Icepak software to simulate the steady-state heat transfer property measurement platform model, and establishes the virtual prototype of the product. The product design based on Icepak replaces the test on the physical prototype with the simulation on the virtual prototype, We should reduce or even cancel the manufacturing of physical prototype, shorten the R & D process, and cut R & D costs with the improvement of design quality. Through the comparison and analysis with the experimental data of the offline detection platform, the feasibility of using Icepak to simulate the equipment is proved. The software is used to simulate the ther-mal environment in the hot box. Through comparison and analysis, the most uniform upper wi-nd steady-state thermal environment scheme is found.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
R. M. S. Gama ◽  
R. Pazetto

This work presents an useful tool for constructing the solution of steady-state heat transfer problems, with temperature-dependent thermal conductivity, by means of the solution of Poisson equations. Specifically, it will be presented a procedure for constructing the solution of a nonlinear second-order partial differential equation, subjected to Robin boundary conditions, by means of a sequence whose elements are obtained from the solution of very simple linear partial differential equations, also subjected to Robin boundary conditions. In addition, an a priori upper bound estimate for the solution is presented too. Some examples, involving temperature-dependent thermal conductivity, are presented, illustrating the use of numerical approximations.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4682
Author(s):  
Bo-Hye Choi ◽  
Seung-Yeong Song

The purpose of this study was to compare insulation performance between a base case that applied the existing steel pipe frame and an alternative case that reduced thermal bridging by applying a truss-shaped insulation frame (TIF) to a back frame type curtain wall. Insulation performance was compared by obtaining the effective U-factor and the lowest indoor surface temperature through a three-dimensional steady-state heat transfer simulation. In addition, mock-up tests were performed to compare the U-factors of the base case and alternative case. The simulation results showed that the effective U-factor of the alternative case was 36% lower than in the base case, a significant heat loss reduction. The lowest indoor surface temperature of the alternative case was 0.5 °C higher than in the base case, showing that the surface condensation risk also decreased. In the mock-up test results, the alternative case U-factor was 33% lower than in the base case, confirming the associated large heat loss reduction. For the base case, both the effective U-factor by simulation and the U-factor by the mock-up test were much higher than the design U-factor according to the Korean Design Standard, which neglects thermal bridging, indicating a significantly increased heat loss caused by this factor. For the alternative case, however, both U-factors were similar to the design U-factor.


2021 ◽  
Vol 1 (1) ◽  
pp. 21-37
Author(s):  
Kamel Boughrara ◽  
Frédéric Dubas

This paper presents two-dimensional (2-D) thermal resistances network (TRNM), exact analytical (AM) and hybrid (HM) methods for calculating steady-state temperature and heat flux distribution in rotating electrical machines considering materials anisotropy (i.e., different thermal conductivities in both directions). They are based on the thermal equivalent circuit (TEC), the improved exact subdomain (SD) technique where the solution and thermal conductivities depend on both directions (r, theta) and the coupling between the two methods. TRNM is known as a semi-analytical method that can predict the heat transfer in the machine in less time than finite element method (Fem). The implementation of TRNM by considering the difference between the thermalconductivities in (r, theta) using its equivalence with Fem is presented. The SD technique is improved to consider the difference between thermal conductivities in the directions (r, theta). It is known that the SD technique with non-homogeneous boundary conditions (BCs) is very sensitive to the dimensions of SDs where the harmonics number and the accuracy are lower in small subdomains. Hence, the HM from the TRNM and AM is given to answer these inaccuracies especially in electrical machines with a high number of stator slots and rotor poles. The heat sources are volumetric power losses due to hysteresis, eddy-current, Joule losses and windage losses in all the regions of the machine obtained by a simplified method. The studied problem is conductive with conductive interface conditions (ICs) and convective heat transfer between the machine and the external air and at the rotor internal air. The semi-analytical results are compared between them as well as with those obtained by Fem.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3827
Author(s):  
Marek Klimczak ◽  
Witold Cecot

In this paper, we present a new approach to model the steady-state heat transfer in heterogeneous materials. The multiscale finite element method (MsFEM) is improved and used to solve this problem. MsFEM is a fast and flexible method for upscaling. Its numerical efficiency is based on the natural parallelization of the main computations and their further simplifications due to the numerical nature of the problem. The approach does not require the distinct separation of scales, which makes its applicability to the numerical modeling of the composites very broad. Our novelty relies on modifications to the standard higher-order shape functions, which are then applied to the steady-state heat transfer problem. To the best of our knowledge, MsFEM (based on the special shape function assessment) has not been previously used for an approximation order higher than p = 2, with the hierarchical shape functions applied and non-periodic domains, in this problem. Some numerical results are presented and compared with the standard direct finite-element solutions. The first test shows the performance of higher-order MsFEM for the asphalt concrete sample which is subject to heating. The second test is the challenging problem of metal foam analysis. The thermal conductivity of air and aluminum differ by several orders of magnitude, which is typically very difficult for the upscaling methods. A very good agreement between our upscaled and reference results was observed, together with a significant reduction in the number of degrees of freedom. The error analysis and the p-convergence of the method are also presented. The latter is studied in terms of both the number of degrees of freedom and the computational time.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Rogério M. Saldanha da Gama

The subject of this paper is the steady-state heat transfer process in a rigid mixture with N continuous constituents, each of them representing a given continuous body. A continuous mixture consists of a convenient representation for bodies composed by several different materials or phases, in which the actual interfaces do not allow an adequate Classical Continuum Mechanics approach, once that the boundary conditions make the mathematical description of the problem unfeasible (as for instance in reinforced concrete, polymer strengthened concrete, and porous media). The phenomenon is mathematically described by a set of N partial differential equations coupled by temperature-dependent terms that play the role of internal energy sources. These internal energy sources arise because, at each spatial point, there are different temperatures, each one associated with one constituent of the mixture. The coupling among the partial differential equations arises from the thermal interchange among continua in a thermal nonequilibrium context (different temperature levels). In this work, it is presented a functional whose minimization is equivalent to the solution of the original steady-state problem (variational principle). The features of this functional give rise to proofs of solution existence and solution uniqueness. It is remarkable that, with the functional to be proposed here, instead of solving a system of N coupled partial differential equations, we need to look only for the minimum of a single functional.


Sign in / Sign up

Export Citation Format

Share Document