A comprehensive investigation of the pseudo-skin factor for partially completed vertical wells

2012 ◽  
Vol 9 (6) ◽  
pp. 642-654 ◽  
Author(s):  
Vahid Farokhi ◽  
Shahab Gerami
Author(s):  
Ekhwaiter Abobaker ◽  
Abadelhalim Elsanoose ◽  
Faisal Khan ◽  
Mohammad Azizur Rahman ◽  
Amer Aborig ◽  
...  

AbstractAn oil well's productivity is generally considered the standard measure of the well's performance. However, productivity depends on several factors, including fluid characteristics, formation damage, the reservoir's formation, and the kind of completion the well undergoes. How a partial completion can affect a well's performance will be investigated in detail in this study, as nearly every vertical well is only partially completed as a result of gas cap or water coning issues. Partially penetrated wells typically experience a larger pressure drop of fluid flow caused by restricted regions, thus increasing the skin factor. A major challenge for engineers when developing completion designs or optimizing skin factor variables is devising and testing suitable partial penetration skin and comparing completion options. Several researchers have studied and calculated a partial penetration skin factor, but some of their results tend to be inaccurate and cause excessive errors. The present work proposes experimental work and a numerical simulation model for accurate estimation of the pseudo-skin factor for partially penetrated wells. The work developed a simple correlation for predicting the partial penetration skin factor for perforated vertical wells. The work also compared the results from available models that are widely accepted by the industry as a basis for gauging the accuracy of the new correlation in estimating the skin factor. Compared to other approaches, the novel correlation performs well by providing estimates for the partial penetration skin factor that are relatively close to those obtained by the tested models. This work's main contribution is the presentation of a novel correlation that simplifies the estimation of the partial penetration skin factor in partially completed vertical wells.


2006 ◽  
Vol 9 (01) ◽  
pp. 61-76 ◽  
Author(s):  
Turhan Yildiz

Summary In this study, the available methods and software to predict the well productivity and total skin factor in fully perforated vertical wells have been reviewed. The methods have been compared against the experimental data obtained on an electrolytic apparatus, and their accuracy has been investigated. It has been observed that the 3D semianalytical model, SPAN 6.0 software, and the simple hybrid model described in this paper replicate the experimental results very well. On the other hand, the results estimated from the McLeod method and the Karakas-Tariq method substantially deviate from the experimental data; hence, these models/methods should be used with caution. The literature hosts many equations to predict the total skin factor in partially perforated vertical wells. Some of the available models have been tested against the results from the 3D semianalytical model. It has been shown that total skin-factor equations based on the summation of individual components do not work. The 3D semianalytical model has been modified to build an approximate model for fully and partially perforated inclined wells in isotropic formations. Additionally, a simple hybrid model to compute total skin factor in perforated inclined wells has been presented. The hybrid model for perforated inclined wells agrees well with the approximate 3D model. Some of the available models to calculate total skin factor in perforated inclined wells have been compared to the approximate 3D model, and their accuracy has been discussed. Finally, a simple model to predict total skin factors in perforated horizontal wells has been developed. The application using the simple model has demonstrated that a combination of long wellbore length and perforations bypassing the damaged zone could overcome the destructive effect of severe formation damage around the wellbore. Introduction The long-term productivity of oil and gas wells is influenced by many factors. Among these factors are petrophysical properties, fluid properties, degree of formation damage and/or stimulation, well geometry, well completions, number of fluid phases, and flow-velocity type. To isolate and identify the effect of any single parameter on the well performance, a sensitivity study on the parameter of interest is conducted, and the results are compared to a reference base case of an ideal vertical open hole. In the base case, the ideal vertical open hole produces single-phase fluid, the fluid flow obeys Darcy's law, and the formation is neither stimulated nor damaged. The influence of the individual parameters not considered in the base case is quantified in terms of skin factor. Oil and gas wells may have permeability reduction around the wellbore caused by invasion by drilling mud, cement, solids, and completion fluids. This is generally referred to as formation damage. Formation damage around the wellbore causes additional pressure drop. On the other hand, stimulation operations such as acidizing may decrease the pressure drop in the near-wellbore region by improving the formation permeability around the wellbore. The impact of permeability impairment/improvement around the wellbore caused by drilling, production, and acidizing operations is quantified in terms of mechanical skin factor. The fluid flow in the near-wellbore region is also influenced by well-completion type. Openhole completion yields a local flow pattern that is radial around the wellbore and normal to the well trajectory. However, in some cases, openhole completion may not be desirable. Different types of well completion may be needed to control/isolate fluid entry into the wellbore, to avoid gas/water coning, and to minimize sand production. Besides the openhole completion, wells may be partially or selectively completed with perforations, slotted liners, gravel packs, screens, and zonal-isolation devices. Also, wells with low productivity may need to be hydraulically fractured. In completed wells, the flow pattern around the wellbore is distorted. Completions result in additional fluid convergence and divergence in the near-wellbore region. For example, partial penetration creates a 2D flow field in the formation. On the other hand, a perforated well experiences 3D flow converging around perforation tunnels. Compared to an ideal open hole, the wells with completions are subject to additional pressure gain/loss in the near-wellbore region. The additional pressure change caused by well completion is quantified in terms of completion pseudoskin factor. Well performance is naturally influenced by the geometry of the well itself. Based on their geometrical shape, wells may be classified as vertical, inclined, horizontal, undulating, and multibranched. In the literature, the reference well geometry has been that of a fully penetrating vertical open hole. Historically, the differences in the productivity of vertical openhole and other well geometries have also been formulated in terms of pseudoskin factor. However, when it comes to the assessment of completion effects on well productivity, rather than comparing the given completed nonvertical well to an ideal vertical open hole, it may be more appropriate to work with the considered well geometry only and compare the completed and openhole cases of the same well geometry. For this reason, the term geometrical pseudoskin factor is proposed to quantify the differences between the productivities of vertical wells and other well geometries. Multiphase flow in the formation may evolve because of gas/water coning around the wellbore, gas evaporation from the liquid-hydrocarbon phase, and liquid dropout from gas condensate. Compared to single-phase fluid flow, multiphase flow in the formation creates an additional pressure drop because of the relative permeability effect. If multiphase flow is intensified in the near-wellbore region, only then may the impact of multiphase flow be formulated in terms of multiphase pseudoskin factor.


Author(s):  
Amreek Singh ◽  
Warren G. Foster ◽  
Anna Dykeman ◽  
David C. Villeneuve

Hexachlorobenzene (HCB) is a known toxicant that is found in the environment as a by-product during manufacture of certain pesticides. This chlorinated chemical has been isolated from many tissues including ovary. When administered in high doses, HCB causes degeneration of primordial germ cells and ovary surface epithelium in sub-human primates. A purpose of this experiment was to determine a no-effect dose of the chemical on the rat ovary. The study is part of a comprehensive investigation on the effects of the compound on the biochemical, hematological, and morphological parameters in the monkey and rat.


Author(s):  
M.M. Khasanov ◽  
◽  
K.E. Lezhnev ◽  
V.D. Pashkin ◽  
A.P. Roshchektaev ◽  
...  
Keyword(s):  

2019 ◽  
pp. 36-38
Author(s):  
M.V. Zaitsev ◽  
◽  
N.N. Mikhailov ◽  
Keyword(s):  

2018 ◽  
Vol 17 (4) ◽  
pp. 337-348
Author(s):  
Bai Zhouya ◽  
Huang Xiaojun ◽  
Meng Jinxia ◽  
Kan Lijiao ◽  
Nie Shaoping

Distribution of phenolic compounds and antioxidant activities was surveyed in 24 varieties of Chinese cowpea from 4 provinces. Identity of phytochemicals were determined by UPLC-ESIQTOF-MS/MS and quantified by HPLC-ESI-QqQ-MS/MS. Seven phenolic acids, 16 flavonoids and 9 other compounds were identified and several of these were quantified. Quercetin-3-glucoside and kaempferol-glucoside were the major phenolic compounds. In addition, our study indicated that OJYDH cultivar from Jiangxi province had the highest total phenolic content, total flavonoid content and stronger antioxidant activities than other cowpea cultivars. This study made a comprehensive investigation on antioxidants from cowpea and provided the useful data to support its function.


Sign in / Sign up

Export Citation Format

Share Document