scholarly journals Universal finite-size corrections of the entanglement entropy of quantum ladders and the entropic area law

2014 ◽  
Vol 2014 (10) ◽  
pp. P10034 ◽  
Author(s):  
J C Xavier ◽  
F B Ramos
2021 ◽  
Vol 10 (3) ◽  
Author(s):  
Benoit Estienne ◽  
Yacine Ikhlef ◽  
Alexi Morin-Duchesne

In the presence of a conserved quantity, symmetry-resolved entanglement entropies are a refinement of the usual notion of entanglement entropy of a subsystem. For critical 1d quantum systems, it was recently shown in various contexts that these quantities generally obey entropy equipartition in the scaling limit, i.e. they become independent of the symmetry sector. In this paper, we examine the finite-size corrections to the entropy equipartition phenomenon, and show that the nature of the symmetry group plays a crucial role. In the case of a discrete symmetry group, the corrections decay algebraically with system size, with exponents related to the operators' scaling dimensions. In contrast, in the case of a U(1) symmetry group, the corrections only decay logarithmically with system size, with model-dependent prefactors. We show that the determination of these prefactors boils down to the computation of twisted overlaps.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Sotaro Sugishita

Abstract We consider entanglement of first-quantized identical particles by adopting an algebraic approach. In particular, we investigate fermions whose wave functions are given by the Slater determinants, as for singlet sectors of one-matrix models. We show that the upper bounds of the general Rényi entropies are N log 2 for N particles or an N × N matrix. We compute the target space entanglement entropy and the mutual information in a free one-matrix model. We confirm the area law: the single-interval entropy for the ground state scales as $$ \frac{1}{3} $$ 1 3 log N in the large N model. We obtain an analytical $$ \mathcal{O}\left({N}^0\right) $$ O N 0 expression of the mutual information for two intervals in the large N expansion.


2008 ◽  
Vol 2008 (08) ◽  
pp. 099-099 ◽  
Author(s):  
Davide Astolfi ◽  
Troels Harmark ◽  
Gianluca Grignani ◽  
Marta Orselli

Sign in / Sign up

Export Citation Format

Share Document