scholarly journals Analysis of the turbulent boundary layer on a flat plate at M=6÷8.8 with the use of NERAT-2D code and algebraic turbulence models

2018 ◽  
Vol 1009 ◽  
pp. 012016
Author(s):  
S T Surzhikov
2013 ◽  
Vol 444-445 ◽  
pp. 416-422
Author(s):  
Yang Yang Tang ◽  
Zhi Qiang Li ◽  
Yong Wang ◽  
Ya Chao Di ◽  
Huan Xu ◽  
...  

The extended GAO-YONG turbulence model is used to simulate the flow and heat transfer of flat-plate turbulent boundary layer, and the results indicate that GAO-YONG turbulence model may well describe boundary layer flow and heat transfer from near-wall region to far outer area, without using any empirical coefficients and near-wall treatments, such as wall-function or modified low Reynolds number model, which are used widely in all RANS turbulence models.


2016 ◽  
Vol 139 (1) ◽  
Author(s):  
Louis B. Wonnell ◽  
James Chen

A boundary layer with Re = 106 is simulated numerically on a flat plate using morphing continuum theory. This theory introduces new terms related to microproperties of the fluid. These terms are added to a finite-volume fluid solver with appropriate boundary conditions. The success of capturing the initial disturbances leading to turbulence is shown to be a byproduct of the physical and mathematical rigor underlying the balance laws and constitutive relations introduced by morphing continuum theory (MCT). Dimensionless equations are introduced to produce the parameters driving the formation of disturbances leading to turbulence. Numerical results for the flat plate are compared with the experimental results determined by the European Research Community on Flow, Turbulence, and Combustion (ERCOFTAC) database. Experimental data show good agreement inside the boundary layer and in the bulk flow. Success in predicting conditions necessary for turbulent and transitional (T2) flows without ad hoc closure models demonstrates the theory's inherent advantage over traditional turbulence models.


1984 ◽  
Vol 27 (232) ◽  
pp. 2142-2151 ◽  
Author(s):  
Takao KAWAMURA ◽  
Munehiko HIWADA ◽  
Toshiharu HIBINO ◽  
Ikuo MABUCHI ◽  
Masaya KUMADA

Sign in / Sign up

Export Citation Format

Share Document