Morphing Continuum Theory: Incorporating the Physics of Microstructures to Capture the Transition to Turbulence Within a Boundary Layer

2016 ◽  
Vol 139 (1) ◽  
Author(s):  
Louis B. Wonnell ◽  
James Chen

A boundary layer with Re = 106 is simulated numerically on a flat plate using morphing continuum theory. This theory introduces new terms related to microproperties of the fluid. These terms are added to a finite-volume fluid solver with appropriate boundary conditions. The success of capturing the initial disturbances leading to turbulence is shown to be a byproduct of the physical and mathematical rigor underlying the balance laws and constitutive relations introduced by morphing continuum theory (MCT). Dimensionless equations are introduced to produce the parameters driving the formation of disturbances leading to turbulence. Numerical results for the flat plate are compared with the experimental results determined by the European Research Community on Flow, Turbulence, and Combustion (ERCOFTAC) database. Experimental data show good agreement inside the boundary layer and in the bulk flow. Success in predicting conditions necessary for turbulent and transitional (T2) flows without ad hoc closure models demonstrates the theory's inherent advantage over traditional turbulence models.

1999 ◽  
Vol 398 ◽  
pp. 109-153 ◽  
Author(s):  
XIAOHUA WU ◽  
ROBERT G. JACOBS ◽  
JULIAN C. R. HUNT ◽  
PAUL A. DURBIN

The interaction between an initially laminar boundary layer developing spatially on a flat plate and wakes traversing the inlet periodically has been simulated numerically. The three-dimensional, time-dependent Navier–Stokes equations were solved with 5.24×107 grid points using a message passing interface on a scalable parallel computer. The flow bears a close resemblance to the transitional boundary layer on turbomachinery blades and was designed following, in outline, the experiments by Liu & Rodi (1991). The momentum thickness Reynolds number evolves from Reθ = 80 to 1120. Mean and second-order statistics downstream of Reθ = 800 are of canonical flat-plate turbulent boundary layers and are in good agreement with Spalart (1988).In many important aspects the mechanism leading to the inception of turbulence is in agreement with previous fundamental studies on boundary layer bypass transition, as summarized in Alfredsson & Matsubara (1996). Inlet wake disturbances inside the boundary layer evolve rapidly into longitudinal puffs during an initial receptivity phase. In the absence of strong forcing from free-stream vortices, these structures exhibit streamwise elongation with gradual decay in amplitude. Selective intensification of the puffs occurs when certain types of turbulent eddies from the free-stream wake interact with the boundary layer flow through a localized instability. Breakdown of the puffs into young turbulent spots is preceded by a wavy motion in the velocity field in the outer part of the boundary layer.Properties and streamwise evolution of the turbulent spots following breakdown, as well as the process of completion of transition to turbulence, are in agreement with previous engineering turbomachinery flow studies. The overall geometrical characteristics of the matured turbulent spot are in good agreement with those observed in the experiments of Zhong et al. (1998). When breakdown occurs in the outer layer, where local convection speed is large, as in the present case, the spots broaden downstream, having the vague appearance of an arrowhead pointing upstream.The flow has also been studied statistically. Phase-averaged velocity fields and skin-friction coefficients in the transitional region show similar features to previous cascade experiments. Selected results from additional thought experiments and simulations are also presented to illustrate the effects of streamwise pressure gradient and free-stream turbulence.


1996 ◽  
Vol 326 ◽  
pp. 1-36 ◽  
Author(s):  
FréDÉRic Ducros, Pierre Comte ◽  
Marcel Lesieur

It is well known that subgrid models such as Smagorinsky's cannot be used for the spatially growing simulation of the transition to turbulence of flat-plate boundary layers, unless large-amplitude perturbations are introduced at the upstream boundary: they are over-dissipative, and the flow simulated remains laminar. This is also the case for the structure-function model (SF) of Métais & Lesieur (1992). In the present paper we present a sequel to this model, the filtered-structure-function (FSF) model. It consists of removing the large-scale fluctuations of the field before computing its second-order structure function. Analytical arguments confirm the superiority of the FSF model over the SF model for large-eddy simulations of weakly unstable transitional flows. The FSF model is therefore used for the simulation of a quasi-incompressible (M∞ = 0.5) boundary layer developing spatially over an adiabatic flat plate, with a low level of upstream forcing. With the minimal resolution 650 × 32 × 20 grid points covering a range of streamwise Reynolds numbers Rex1 ε [3.4 × 105, 1.1 × 106], transition is obtained for 80 hours of time-processing on a CRAY 2 (whereas DNS of the whole transition takes about ten times longer). Statistics of the LES are found to be in acceptable agreement with experiments and empirical laws, in the laminar, transitional and turbulent parts of the domain. The dynamics of low-pressure and high-vorticity distributions is examined during transition, with particular emphasis on the neighbourhood of the critical layer (defined here as the height of the fluid travelling at a speed equal to the phase speed of the incoming Tollmien–Schlichting waves). Evidence is given that a subharmonic-type secondary instability grows, followed by a purely spanwise (i.e. time-independent) mode which yields peak-and-valley splitting and transition to turbulence. In the turbulent region, flow visualizations and local instantaneous profiles are provided. They confirm the presence of low- and high-speed streaks at the wall, weak hairpins stretched by the flow and bursting events. It is found that most of the vorticity is produced in the spanwise direction, at the wall, below the high-speed streaks. Isosurfaces of eddy viscosity confirm that the FSF model does not perturb transition much, and acts mostly in the vicinity of the hairpins.


2001 ◽  
Vol 428 ◽  
pp. 29-60 ◽  
Author(s):  
PAUL ANDERSSON ◽  
LUCA BRANDT ◽  
ALESSANDRO BOTTARO ◽  
DAN S. HENNINGSON

A scenario of transition to turbulence likely to occur during the development of natural disturbances in a flat-plate boundary layer is studied. The perturbations at the leading edge of the flat plate that show the highest potential for transient energy amplification consist of streamwise aligned vortices. Due to the lift-up mechanism these optimal disturbances lead to elongated streamwise streaks downstream, with significant spanwise modulation. Direct numerical simulations are used to follow the nonlinear evolution of these streaks and to verify secondary instability calculations. The theory is based on a linear Floquet expansion and focuses on the temporal, inviscid instability of these flow structures. The procedure requires integration in the complex plane, in the coordinate direction normal to the wall, to properly identify neutral modes belonging to the discrete spectrum. The streak critical amplitude, beyond which streamwise travelling waves are excited, is about 26% of the free-stream velocity. The sinuous instability mode (either the fundamental or the subharmonic, depending on the streak amplitude) represents the most dangerous disturbance. Varicose waves are more stable, and are characterized by a critical amplitude of about 37%. Stability calculations of streamwise streaks employing the shape assumption, carried out in a parallel investigation, are compared to the results obtained here using the nonlinearly modified mean fields; the need to consider a base flow which includes mean flow modification and harmonics of the fundamental streak is clearly demonstrated.


2013 ◽  
Vol 444-445 ◽  
pp. 416-422
Author(s):  
Yang Yang Tang ◽  
Zhi Qiang Li ◽  
Yong Wang ◽  
Ya Chao Di ◽  
Huan Xu ◽  
...  

The extended GAO-YONG turbulence model is used to simulate the flow and heat transfer of flat-plate turbulent boundary layer, and the results indicate that GAO-YONG turbulence model may well describe boundary layer flow and heat transfer from near-wall region to far outer area, without using any empirical coefficients and near-wall treatments, such as wall-function or modified low Reynolds number model, which are used widely in all RANS turbulence models.


2021 ◽  
Vol 16 (1) ◽  
pp. 65-80
Author(s):  
Ivan A. Sadovsky ◽  
Mikhail M Katasonov ◽  
Alexander M. Pavlenko

In a wind tunnel on a flat plate in a separated flow behind a rectangular step, the emergence and development of localized disturbances generated by low-frequency impulse deviations of the local surface section under conditions of low and moderate degrees of the incoming flow turbulence is studied. The results were obtained by hot-wire anemometry at low subsonic flow velocity. It was found that impulse deviations of the wall generate disturbances, which are socalled Streaky structures and wave packets of oscillations. The separation of the laminar boundary layer accelerates the growth of wave packets with subsequent turbulization of the near-wall flow. The specific features of the behavior of localized disturbances under conditions of moderate degree of free-stream turbulence are revealed.


2011 ◽  
Vol 668 ◽  
pp. 267-292 ◽  
Author(s):  
JAMES S. STRAND ◽  
DAVID B. GOLDSTEIN

A spectral direct numerical simulation (DNS) code was used to study the growth and spreading of turbulent spots in a nominally laminar, zero-pressure-gradient boundary layer. In addition to the flat-plate case, the interaction of these spots with riblets was investigated. The flat plate, riblets and initial spot perturbation were simulated via an immersed boundary method, and a ‘suction wall’ allowed the available channel code to model a boundary layer. In both flat-wall and riblet cases, self-similar arrowhead-shaped spots formed. The λ2 variable of Jeong & Hussain (1995) was used to visualize the vortical structures within a spot, and a spot was seen to consist primarily of a multitude of entwined hairpin vortices. The range of scales of the hairpin vortices was found to increase as the spot matures. Ensemble averaging was used to obtain more accurate results for the spot spreading angle, both for the flat-wall case and the riblet case. The spreading angle for the flat-wall spot was 6.3°, in reasonably good agreement with prior DNS work. The spreading angle for the spot over riblets was 5.4°, a decrease of 14% compared with the flat-wall.


1969 ◽  
Vol 36 (1) ◽  
pp. 87-112 ◽  
Author(s):  
W. R. Davies ◽  
L. Bernstein

The results of experiments designed to investigate the shock-induced boundary layer on a semi-infinite flat plate are described.Those for the laminar boundary layer are shown to be in agreement with a theory due to Lam & Crocco (1958) which describes two distinct domains, one near the shock where the flow is quasi-steady in a shock-fixed co-ordinate system and an unsteady region in which the flow characteristics approach the familiar steady state asymptotically. Experimental results are also presented for the non-laminar boundary layer. In particular the transition to turbulence in this unsteady boundary layer is discussed in some detail.‘Establishment times’ for steady boundary layers are given for both laminar and turbulent flows, and their relevance to the testing times available in shock tubes is discussed. The measured heat transfer rates are compared with existing theories.


Sign in / Sign up

Export Citation Format

Share Document