scholarly journals Q Value Reinforcement Learning Algorithm Based on Multi Agent System

2018 ◽  
Vol 1069 ◽  
pp. 012094 ◽  
Author(s):  
Xijie Yin ◽  
Dongxin Yang
2020 ◽  
Vol 17 (2) ◽  
pp. 647-664
Author(s):  
Yangyang Ge ◽  
Fei Zhu ◽  
Wei Huang ◽  
Peiyao Zhao ◽  
Quan Liu

Multi-Agent system has broad application in real world, whose security performance, however, is barely considered. Reinforcement learning is one of the most important methods to resolve Multi-Agent problems. At present, certain progress has been made in applying Multi-Agent reinforcement learning to robot system, man-machine match, and automatic, etc. However, in the above area, an agent may fall into unsafe states where the agent may find it difficult to bypass obstacles, to receive information from other agents and so on. Ensuring the safety of Multi-Agent system is of great importance in the above areas where an agent may fall into dangerous states that are irreversible, causing great damage. To solve the safety problem, in this paper we introduce a Multi-Agent Cooperation Q-Learning Algorithm based on Constrained Markov Game. In this method, safety constraints are added to the set of actions, and each agent, when interacting with the environment to search for optimal values, should be restricted by the safety rules, so as to obtain an optimal policy that satisfies the security requirements. Since traditional Multi-Agent reinforcement learning algorithm is no more suitable for the proposed model in this paper, a new solution is introduced for calculating the global optimum state-action function that satisfies the safety constraints. We take advantage of the Lagrange multiplier method to determine the optimal action that can be performed in the current state based on the premise of linearizing constraint functions, under conditions that the state-action function and the constraint function are both differentiable, which not only improves the efficiency and accuracy of the algorithm, but also guarantees to obtain the global optimal solution. The experiments verify the effectiveness of the algorithm.


2020 ◽  
Vol 17 (3) ◽  
pp. 172988142091696
Author(s):  
Xiaoli Liu

This article studies a multi-agent reinforcement learning algorithm based on agent action prediction. In multi-agent system, the action of learning agent selection is inevitably affected by the action of other agents, so the reinforcement learning system needs to consider the joint state and joint action of multi-agent based on this. In addition, the application of this method in the cooperative strategy learning of soccer robot is studied, so that the multi-agent system can pass through the environment. To realize the division of labour and cooperation of multi-robots, the interactive learning is used to master the behaviour strategy. Combined with the characteristics of decision-making of soccer robot, this article analyses the role transformation and experience sharing of multi-agent reinforcement learning, and applies it to the local attack strategy of soccer robot, uses this algorithm to learn the action selection strategy of the main robot in the team, and uses Matlab platform for simulation verification. The experimental results prove the effectiveness of the research method, and the superiority of the proposed method is validated compared with some simple methods.


2014 ◽  
pp. 39-44
Author(s):  
Anton Kabysh ◽  
Vladimir Golovko ◽  
Arunas Lipnickas

This paper describes a multi-agent influence learning approach and reinforcement learning adaptation to it. This learning technique is used for distributed, adaptive and self-organizing control in multi-agent system. This technique is quite simple and uses agent’s influences to estimate learning error between them. The best influences are rewarded via reinforcement learning which is a well-proven learning technique. It is shown that this learning rule supports positive-reward interactions between agents and does not require any additional information than standard reinforcement learning algorithm. This technique produces optimal behavior of multi-agent system with fast convergence patterns.


2020 ◽  
Vol 17 (2) ◽  
pp. 619-646
Author(s):  
Chao Wang ◽  
Xing Qiu ◽  
Hui Liu ◽  
Dan Li ◽  
Kaiguang Zhao ◽  
...  

Multi-Agent system has broad application in real world, whose security performance, however, is barely considered. Reinforcement learning is one of the most important methods to resolve Multi-Agent problems. At present, certain progress has been made in applying Multi-Agent reinforcement learning to robot system, man-machine match, and automatic, etc. However, in the above area, an agent may fall into unsafe states where the agent may find it difficult to bypass obstacles, to receive information from other agents and so on. Ensuring the safety of Multi-Agent system is of great importance in the above areas where an agent may fall into dangerous states that are irreversible, causing great damage. To solve the safety problem, in this paper we introduce a Multi-Agent Cooperation Q-Learning Algorithm based on Constrained Markov Game. In this method, safety constraints are added to the set of actions, and each agent, when interacting with the environment to search for optimal values, should be restricted by the safety rules, so as to obtain an optimal policy that satisfies the security requirements. Since traditional Multi-Agent reinforcement learning algorithm is no more suitable for the proposed model in this paper, a new solution is introduced for calculating the global optimum state-action function that satisfies the safety constraints. We take advantage of the Lagrange multiplier method to determine the optimal action that can be performed in the current state based on the premise of linearizing constraint functions, under conditions that the state-action function and the constraint function are both differentiable, which not only improves the efficiency and accuracy of the algorithm, but also guarantees to obtain the global optimal solution. The experiments verify the effectiveness of the algorithm.


Sign in / Sign up

Export Citation Format

Share Document