scholarly journals Development of Unscented Kalman Filter Algorithm for stock price estimation

2019 ◽  
Vol 1211 ◽  
pp. 012031
Author(s):  
D F Karya ◽  
P Katias ◽  
T Herlambang ◽  
D Rahmalia
Sensors ◽  
2015 ◽  
Vol 15 (9) ◽  
pp. 24595-24614 ◽  
Author(s):  
Guoliang Chen ◽  
Xiaolin Meng ◽  
Yunjia Wang ◽  
Yanzhe Zhang ◽  
Peng Tian ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Dazhang You ◽  
Pan Liu ◽  
Wei Shang ◽  
Yepeng Zhang ◽  
Yawei Kang ◽  
...  

An improved UKF (Unscented Kalman Filter) algorithm is proposed to solve the problem of radar azimuth mutation. Since the radar azimuth angle will restart to count after each revolution of the radar, and when the aircraft just passes the abrupt angle change, the radar observation measurement will have a sudden change, which has serious consequences and is solved by the proposed novel UKF based on SVD. In order to improve the tracking accuracy and stability of the radar tracking system further, the SVD-MUKF (Singular Value Decomposition-based Memory Unscented Kalman Filter) based on multiple memory fading is constructed. Furthermore, several simulation results show that the SVD-MUKF algorithm proposed in this paper is better than the SVD-UKF (Singular Value Decomposition of Unscented Kalman Filter) algorithm and classical UKF algorithm in accuracy and stability. Last but not the least, the SVD-MUKF can achieve stable tracking of targets even in the case of angle mutation.


Author(s):  
Xiaohua Li ◽  
Ya'an Li ◽  
Xiaofeng Lu ◽  
Chenxu Zhao ◽  
Jing Yu

Underwater bearing-only multitarget tracking in clutter environment is challenging because of the measurement nonlinearity, range unobservability, and data association uncertainty. In terms of the principle of expectation maximization, combining the extended Kalman filter (EKF) and unscented Kalman filter algorithm(UKF), a new bearing-only multi-sensor multitarget tracking via probabilistic multiple hypothesis tracking(PMHT) algorithm is proposed. The PMHT algorithm introduces an association variable to deal with the data association uncertainty problem between the measurements and the targets. Furthermore, the EKF-based PMHT for multi-sensor multitarget system is simplified, which obviate the need to "stack" the synthetic measurements and can reduce the computation cost. The estimation accuracy of the EKF based on PMHT approach and UKF based on PMHT approach in simulation experiments for underwater bearing-only cross-moving targets and closely spaced targets for the case of stationary multiple observations and maneuvering single observation under dense clutter environment is analyzed. The experimental results demonstrate that the present algorithm is very well in a highly clutter environment and its computational load is low, which confirms the effectiveness of the algorithm to the bearing-only multitarget tracking in dense clutter.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Jun Guan ◽  
Wenjun Yi

The article establishes a seven-degree-of-freedom projectile trajectory model for a new type of spinning projectile. Based on this model, a numerical analysis is performed on the ballistic characteristics of the projectile, and the trajectory of the dual-spinning projectile is filtered with the unscented Kalman filter algorithm, so that the measurement information of projectile onboard equipment is more accurate and more reliable measurement data are provided for the guidance system. The numerical simulation indicates that the dual-spinning projectile is mainly different from the traditional spinning projectile in that a degree of freedom is added in the direction of the axis of the projectile, the forebody of the projectile spins at a low speed or even holds still to improve the control precision of the projectile control system, while the afterbody spins at a high speed maintaining the gyroscopic stability of the projectile. The trajectory filtering performed according to the unscented Kalman filter algorithm can improve the accuracy of measurement data and eliminate the measurement error effectively, so as to obtain more accurate and reliable measurement data.


Sign in / Sign up

Export Citation Format

Share Document