scholarly journals Enhancement strict avalanche criterion value in robust S-boxes construction using selected irreducible polynomial and affine matrixes

2019 ◽  
Vol 1321 ◽  
pp. 032020 ◽  
Author(s):  
Alamsyah ◽  
A Bejo ◽  
T B Adji
2020 ◽  
Vol 7 (1) ◽  
pp. 10-22 ◽  
Author(s):  
Alamsyah Alamsyah

An irreducible polynomial is one of the main components in building an S-box with an algebraic technique approach. The selection of the precise irreducible polynomial will determine the quality of the S-box produced. One method for determining good S-box quality is strict avalanche criterion will be perfect if it has a value of 0.5. Unfortunately, in previous studies, the strict avalanche criterion value of the S-box produced still did not reach perfect value. In this paper, we will discuss S-box construction using selected irreducible polynomials. This selection is based on the number of elements of the least amount of irreducible polynomials that make it easier to construct S-box construction. There are 17 irreducible polynomials that meet these criteria. The strict avalanche criterion test results show that the irreducible polynomial p17(x) =x8 + x7 + x6 + x + 1 is the best with a perfect SAC value of 0.5. One indicator that a robust S-box is an ideal strict avalanche criterion value of 0.5


2002 ◽  
Vol 166 ◽  
pp. 183-207 ◽  
Author(s):  
Yuki Sano

AbstractWe characterize numbers having purely periodic β-expansions where β is a Pisot number satisfying a certain irreducible polynomial. The main tool of the proof is to construct a natural extension on a d-dimensional domain with a fractal boundary.


2019 ◽  
Vol 27 (2) ◽  
pp. 133-137
Author(s):  
Christoph Schwarzweller

Summary This is the second part of a four-article series containing a Mizar [2], [1] formalization of Kronecker’s construction about roots of polynomials in field extensions, i.e. that for every field F and every polynomial p ∈ F [X]\F there exists a field extension E of F such that p has a root over E. The formalization follows Kronecker’s classical proof using F [X]/<p> as the desired field extension E [5], [3], [4]. In the first part we show that an irreducible polynomial p ∈ F [X]\F has a root over F [X]/<p>. Note, however, that this statement cannot be true in a rigid formal sense: We do not have F ⊆ [X]/ < p > as sets, so F is not a subfield of F [X]/<p>, and hence formally p is not even a polynomial over F [X]/ < p >. Consequently, we translate p along the canonical monomorphism ϕ : F → F [X]/<p> and show that the translated polynomial ϕ (p) has a root over F [X]/<p>. Because F is not a subfield of F [X]/<p> we construct in this second part the field (E \ ϕF )∪F for a given monomorphism ϕ : F → E and show that this field both is isomorphic to F and includes F as a subfield. In the literature this part of the proof usually consists of saying that “one can identify F with its image ϕF in F [X]/<p> and therefore consider F as a subfield of F [X]/<p>”. Interestingly, to do so we need to assume that F ∩ E = ∅, in particular Kronecker’s construction can be formalized for fields F with F ∩ F [X] = ∅. Surprisingly, as we show in the third part, this condition is not automatically true for arbitray fields F : With the exception of 𝕑2 we construct for every field F an isomorphic copy F′ of F with F′ ∩ F′ [X] ≠ ∅. We also prove that for Mizar’s representations of 𝕑n, 𝕈 and 𝕉 we have 𝕑n ∩ 𝕑n[X] = ∅, 𝕈 ∩ 𝕈 [X] = ∅ and 𝕉 ∩ 𝕉 [X] = ∅, respectively. In the fourth part we finally define field extensions: E is a field extension of F iff F is a subfield of E. Note, that in this case we have F ⊆ E as sets, and thus a polynomial p over F is also a polynomial over E. We then apply the construction of the second part to F [X]/<p> with the canonical monomorphism ϕ : F → F [X]/<p>. Together with the first part this gives - for fields F with F ∩ F [X] = ∅ - a field extension E of F in which p ∈ F [X]\F has a root.


2017 ◽  
Author(s):  
Sankhanil Dey ◽  
Ranjan Ghosh

US defence sponsored the DES program in 1974 and released it in 1977. It remained as a well-known and well accepted block cipher until 1998. Thirty-two 4-bit DES S-Boxes are grouped in eight each with four and are put in public domain without any mention of their design methodology. S-Boxes, 4-bit, 8-bit or 32-bit, find a permanent seat in all future block ciphers. In this paper, while looking into the design methodology of DES S-Boxes, we find that S-Boxes have 128 balanced and non-linear Boolean Functions, of which 102 used once, while 13 used twice and 92 of 102 satisfy the Boolean Function-level Strict Avalanche Criterion. All the S-Boxes satisfy the Bit Independence Criterion. Their Differential Cryptanalysis exhibits better results than the Linear Cryptanalysis. However, no S-Boxes satisfy the S-Box-level SAC analyses. It seems that the designer emphasized satisfaction of Boolean-Function-level SAC and S-Box-level BIC and DC, not the S-Box-level LC and SAC.


Sign in / Sign up

Export Citation Format

Share Document