scholarly journals 3-D Laser Scanning Landslide Deformation Monitoring and Data Processing Based on Computer Cluster

2019 ◽  
Vol 1345 ◽  
pp. 062039
Author(s):  
Shuhui Jiang ◽  
Xinjie Deng ◽  
Mingjian Chen
2013 ◽  
Vol 838-841 ◽  
pp. 1985-1991
Author(s):  
Man Hu ◽  
Mo Wen Xie ◽  
Bo Xu ◽  
Li Wei Wang

The deformation monitoring of the landslide is an important research in the field of slope engineering. The terrestrial laser scanner is frequently applied to the deformation monitoring for landslide risk reduction in recent years. In this paper, the deformation was detected by means of comparison of sequential scanning datasets. And the erosion quantification can be extracted from the deformation. Finally, a preliminary change analysis methodology to distinguish landslide movement from erosion is presented. Our results enable us evaluate the stability of the landslide generally and basically. The application of terrestrial laser scanning to detect the movement and erosion quantification provides us another considerably effective and efficient way in the high-risk landslide deformation monitoring.


2017 ◽  
Vol 5 (2) ◽  
pp. 293-310 ◽  
Author(s):  
Ryan A. Kromer ◽  
Antonio Abellán ◽  
D. Jean Hutchinson ◽  
Matt Lato ◽  
Marie-Aurelie Chanut ◽  
...  

Abstract. We present an automated terrestrial laser scanning (ATLS) system with automatic near-real-time change detection processing. The ATLS system was tested on the Séchilienne landslide in France for a 6-week period with data collected at 30 min intervals. The purpose of developing the system was to fill the gap of high-temporal-resolution TLS monitoring studies of earth surface processes and to offer a cost-effective, light, portable alternative to ground-based interferometric synthetic aperture radar (GB-InSAR) deformation monitoring. During the study, we detected the flux of talus, displacement of the landslide and pre-failure deformation of discrete rockfall events. Additionally, we found the ATLS system to be an effective tool in monitoring landslide and rockfall processes despite missing points due to poor atmospheric conditions or rainfall. Furthermore, such a system has the potential to help us better understand a wide variety of slope processes at high levels of temporal detail.


2011 ◽  
Vol 90-93 ◽  
pp. 2858-2863
Author(s):  
Wei Li ◽  
Xu Wang

Due to the soft and hard threshold function exist shortcomings. This will reduce the performance in wavelet de-noising. in order to solve this problem,This article proposes Modulus square approach. the new approach avoids the discontinuity of the hard threshold function and also decreases the fixed bias between the estimated wavelet coefficients and the wavelet coefficients of the soft-threshold method.Simulation results show that SNR and MSE are better than simply using soft and hard threshold,having good de-noising effect in Deformation Monitoring.


Author(s):  
E. Ö. Avsar ◽  
M. F. Celik ◽  
E. Binbir ◽  
A. E. Arslan ◽  
D. Çokkeçeci ◽  
...  

This paper presents one of the applications of monitoring mechanical tests carried out in Construction Materials Laboratory of Istanbul Technical University. In Turkey, as in many countries, large amount of existing buildings exposed to seismic hazard, therefore various analytical and experimental studies are being conducted to contribute to the solution of the problem. One of the new generation retrofitting techniques is to strength the structural members by using Fiber Reinforcing Polymer (FRP). This study summarize the results of monitoring of deformations short concrete column samples under the incremental compression load. In this study, result of two rectangular short columns are given. One of them was tested as a reference sample, the other sample were tested after strengthening by PET reinforced polymer composite materials. Besides conventional displacement and strain measurement systems, laser scanning method was used to get three dimensional deformed shape of sample at each selected steps.


Author(s):  
M. Diaz ◽  
S. M. Holzer

<p><strong>Abstract.</strong> The basilica of St. Anthony in Padua (13th–14th cent.) is one of the most remarkable pilgrimage sites in Italy. To date, the monument itself has never been subject to a comprehensive stratigraphic analysis. Important information about the construction sequence of the building may be conserved in the domed roofs protecting the inner masonry shells.</p><p>The present paper will focus on the dome next to the facade. During the survey, data acquisition via laser scanner have been flanked by standard tasks. Specifically, the stratification analysis of the timber framework of the dome requires to measure the entire structure, including parts with difficult access, and calls for many scan bases to go further the sight obstacles represented by the rafters and the horizontal collar-beams. Therefore, application of laser scanning might appear difficult at first sight.</p><p>The authors will show that the approach confirms the suitability of the laser scanner technology in facing the general complexity of the structure. The development of a graphic documentation in CAD environment entailed a manageable complexity in terms of time-consumption and precision in data processing. So far, the plans reveal the irregular profile of the dome in its inner masonry shell, and of the outer masonry drum. The sections show a two-centre curvature of the elevation of the outer timber shell. However, the joints among the rafters, ribs, and tie-beams still require a series of traditional in-depth assessments acquired in close-range access.</p><p>Nevertheless, the pragmatic investigative modus operandi, tested up to now, does represent a fixed protocol suitable to be iterated and perfected for each cupola. In such complex structures, the laser scanning process confirms to be a valid strategy to reach a good compromise between time consumption, human effort, and millimetre precision. In this way, the collected material provides a first contribution to acquire knowledge on this Italian medieval masterpiece, which stands out on the international scenario for its historical richness and architectural complexity.</p>


Author(s):  
G. Caroti ◽  
I. Martínez-Espejo Zaragoza ◽  
A. Piemonte

The evolution of Structure from Motion (SfM) techniques and their integration with the established procedures of classic stereoscopic photogrammetric survey have provided a very effective tool for the production of three-dimensional textured models. Such models are not only aesthetically pleasing but can also contain metric information, the quality of which depends on both survey type and applied processing methodologies. An open research topic in this area refers to checking attainable accuracy levels. The knowledge of such accuracy is essential, especially in the integration of models obtained through SfM with other models derived from different sensors or methods (laser scanning, classic photogrammetry ...). Accuracy checks may be conducted by either comparing SfM models against a reference one or measuring the deviation of control points identified on models and measured with classic topographic instrumentation and methodologies. This paper presents an analysis of attainable accuracy levels, according to different approaches of survey and data processing. For this purpose, a survey of the Church of San Miniato in Marcianella (Pisa, Italy), has been used. The dataset is an integration of laser scanning with terrestrial and UAV-borne photogrammetric surveys; in addition, a high precision topographic network was established for the specific purpose. In particular, laser scanning has been used for the interior and the exterior of the church, with the exclusion of the roof, while UAVs have been used for the photogrammetric survey of both roof, with horizontal strips, and façade, with vertical strips.


Sign in / Sign up

Export Citation Format

Share Document