scholarly journals The PLM-2 plasma device for full-scale tests of fusion reactor materials with stationary plasma loads: design parameters

2019 ◽  
Vol 1383 ◽  
pp. 012016
Author(s):  
V P Budaev ◽  
A V Dedov ◽  
A T Komov ◽  
S D Fedorovich ◽  
Z A Zakletskii
2000 ◽  
Vol 37 (2) ◽  
pp. 414-437 ◽  
Author(s):  
Asim Haldar ◽  
VSN Prasad Yenumula ◽  
T R Chari

The results of eight full-scale tests on directly embedded steel pole foundations are presented. Fully instrumented poles were tested to measure the various design parameters. Different types of backfills such as sand, in situ gravelly sand, crushed stone, and flowable material were used. Various parameters were measured, including applied moment, ground line deflection-rotation, rotation of the pole below the ground level, soil pressures, and bending moments in the poles. The behaviour of these foundations was explained through ultimate capacity and moment-rotation characteristics. Based on these test results, it was found that the capacity of the directly embedded pole foundation depends primarily on the compaction levels of backfill and the embedment length of the pole. Flowable backfill material, which does not require any compaction, was found to be most effective and promising. Even when the backfill was loose, the lateral capacity significantly increased by the addition of a baseplate or by installing the pole with an additional embedment depth. Various theories developed for laterally loaded rigid piles were used to predict the moment-rotation behaviour and the ultimate capacity of the directly embedded pole foundation with different types of backfill material. Results from the analytical investigations were compared with those obtained from the full-scale load tests. Comparisons show that the ultimate capacities predicted by the models ranged from 0.30 to 2.20 times the measured capacities.Key words: backfill, compaction, full-scale tests, laterally loaded rigid piles, transmission steel poles, ultimate moment.


Author(s):  
Kazem Sadati ◽  
Hamid Zeraatgar ◽  
Aliasghar Moghaddas

Maneuverability of planing craft is a complicated hydrodynamic subject that needs more studies to comprehend its characteristics. Planing craft drivers follow a common practice for maneuver of the craft that is fundamentally different from ship’s standards. In situ full-scale tests are normally necessary to understand the maneuverability characteristics of planing craft. In this paper, a study has been conducted to illustrate maneuverability characteristics of planing craft by full-scale tests. Accelerating and turning maneuver tests are conducted on two cases at different forward speeds and rudder angles. In each test, dynamic trim, trajectory, speed, roll of the craft are recorded. The tests are performed in planing mode, semi-planing mode, and transition between planing mode to semi-planing mode to study the effects of the craft forward speed and consequently running attitude on the maneuverability. Analysis of the data reveals that the Steady Turning Diameter (STD) of the planing craft may be as large as 40 L, while it rarely goes beyond 5 L for ships. Results also show that a turning maneuver starting at planing mode might end in semi-planing mode. This transition can remarkably improve the performance characteristics of the planing craft’s maneuverability. Therefore, an alternative practice is proposed instead of the classic turning maneuver. In this practice, the craft traveling in the planing mode is transitioned to the semi-planing mode by forward speed reduction first, and then the turning maneuver is executed.


1986 ◽  
Vol 10 (3P2A) ◽  
pp. 728-733 ◽  
Author(s):  
G.E. Lucas ◽  
G.R. Odette ◽  
J.W. Sheckherd ◽  
M.R. Krishnadev

1984 ◽  
Vol 18 (4) ◽  
pp. 166-170
Author(s):  
A. L. Rakhmanova ◽  
I. O. Rybak

1992 ◽  
Vol 191-194 ◽  
pp. 592-597 ◽  
Author(s):  
Minoru Narui ◽  
Tatsuo Shikama ◽  
Yasuichi Endo ◽  
Tsutomu Sagawa ◽  
Hideo Kayano

Sign in / Sign up

Export Citation Format

Share Document