scholarly journals ExaWind: A multifidelity modeling and simulation environment for wind energy

2020 ◽  
Vol 1452 ◽  
pp. 012071 ◽  
Author(s):  
M A Sprague ◽  
S Ananthan ◽  
G Vijayakumar ◽  
M Robinson
2019 ◽  
Author(s):  
Shreyas Ananthan ◽  
Luigi Capone ◽  
Marc Henry de Frahan ◽  
Jonathan Hu ◽  
Jeremy Melvin ◽  
...  

2021 ◽  
pp. 0309524X2110667
Author(s):  
Souhir Tounsi

The study presented in this paper concerns the development of a new methodology for design and controlling a wind energy generation chain. This methodology is based on combined Analytical-Finite Element-Experimental method. This type of converter chosen is an AC-DC inverter with IGBTs to improve the robustness of the power chain structure. It offers a reduction of the cost of the power chain and the improvement of the performances of the global studied system, as the control at power factor equal to unity and providing an electromagnetic torque which is added to the useful torque in order to extract the maximal energy. The control algorithms permit to regulate Le charging voltage and current in their rated values considered as optimal battery charging voltage and current. The global model of the power chain is implemented under the Matlab-Sumilink simulation environment for performance and efficiency analysis.


2015 ◽  
Vol 76 (4) ◽  
Author(s):  
Mohammad Afif Ayob ◽  
Wan Nurshazwani Wan Zakaria ◽  
Jamaludin Jalani ◽  
Mohd Razali Md Tomari

This paper presents the reliability and accuracy of the developed model of 5-axis Mitsubishi RV-2AJ robot arm. The CAD model of the robot was developed by using SolidWorks while the multi-body simulation environment was demonstrated by using SimMechanics toolbox in MATLAB. The forward and inverse kinematics simulation results proposed that the established model resembles the real robot with accuracy of 98.99%. 


2019 ◽  
Vol 24 ◽  
pp. 02012
Author(s):  
Yury Shornikov ◽  
Evgeny Popov

Transients in electric power systems are of great interest to power engineers when designing a new or maintaining an existing system. The paper deals with using hybrid system theory for modeling and simulation of an electric power system with controllers. The presented technique is rather convenient and recommended as mathematical models of transients in electric power systems with controllers in general contain both continuous and discrete components. The modeling and simulation were carried out in the modeling and simulation environment ISMA, which is briefly presented in the paper.


Sign in / Sign up

Export Citation Format

Share Document