scholarly journals Successive ionic layer deposition: possibilities for gas sensor applications

2005 ◽  
Vol 15 ◽  
pp. 45-50 ◽  
Author(s):  
G Korotcenkov ◽  
V Tolstoy ◽  
J Schwank ◽  
I Boris
2002 ◽  
Vol 750 ◽  
Author(s):  
G. Korotcenkov ◽  
V. Macsanov ◽  
Y. Boris ◽  
V. Brinzari ◽  
V. Tolstoy ◽  
...  

ABSTRACTThe possibilities of SILD (successive ionic layer deposition) technology for modification of surface properties of nano-scaled SnO2 films for gas sensor applications were studied and are discussed in this article. Samples of SnO2 with thickness ranging from 30–40 nm were deposited by spray pyrolysis from SnCl4-water solutions. Nano-clusters of Pd and Ag, deposited by the SILD method were applied for surface modification. PdCl2 and AgNO3 were used as precursors for Pd and Ag deposition on the SnO2 surface.It was found that the method of surface modification by SILD can be used for improving both the sensitivity and the rate of gas response of SnO2-based gas sensors to CO and H2. At the same time, the presence of Pd and Ag clusters on the surface of SnO2 depresses the gas response to ozone.


2015 ◽  
Vol 26 (10) ◽  
pp. 105501 ◽  
Author(s):  
Roman Viter ◽  
Adib Abou Chaaya ◽  
Igor Iatsunskyi ◽  
Grzegorz Nowaczyk ◽  
Kristaps Kovalevskis ◽  
...  

2009 ◽  
Vol 3 (1-2) ◽  
pp. 19-28 ◽  
Author(s):  
Ghenadii Korotcenkov ◽  
Sang Han ◽  
Beongki Cho ◽  
Valeri Tolstoy

In this paper the peculiarities of phase composition and morphology of metal oxides synthesized by successive ionic layer deposition (SILD) method are discussed. The main attention is focused on SnO2-based metal oxides, which are promising materials for gas sensor applications. FTIR spectroscopy has shown that the precipitates of metal oxides, deposited by SILD method, are hydroxide, peroxide or hydrated metal oxide-based compounds. After annealing at relatively low temperatures (200-400?C) these compounds release both water and peroxide oxygen and transform into corresponding oxides. According to XRD, SEM and AFM measurements it was confirmed that deposited films had fine-dispersed structures. Only after annealing at Tan>500?C, XRD diffraction peaks, typical for nanocrystalline material with grain size < 6-8 nm, were observed. High roughness and high degree of agglomeration are important peculiarities of metal oxides deposited by SILD. Metal oxide films consist of spherical agglomerates. Degree of agglomeration of the films and agglomerate size could be controlled. It was found that introduction of various additives in the solution for SILD could sufficiently change the microstructure of synthesized metal oxides. .


2016 ◽  
Vol 236 ◽  
pp. 978-987 ◽  
Author(s):  
Joni Huotari ◽  
Ville Kekkonen ◽  
Tomi Haapalainen ◽  
Martin Leidinger ◽  
Tilman Sauerwald ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document