Using of SILD technology for surface modification of SnO2 films for gas sensor applications

2002 ◽  
Vol 750 ◽  
Author(s):  
G. Korotcenkov ◽  
V. Macsanov ◽  
Y. Boris ◽  
V. Brinzari ◽  
V. Tolstoy ◽  
...  

ABSTRACTThe possibilities of SILD (successive ionic layer deposition) technology for modification of surface properties of nano-scaled SnO2 films for gas sensor applications were studied and are discussed in this article. Samples of SnO2 with thickness ranging from 30–40 nm were deposited by spray pyrolysis from SnCl4-water solutions. Nano-clusters of Pd and Ag, deposited by the SILD method were applied for surface modification. PdCl2 and AgNO3 were used as precursors for Pd and Ag deposition on the SnO2 surface.It was found that the method of surface modification by SILD can be used for improving both the sensitivity and the rate of gas response of SnO2-based gas sensors to CO and H2. At the same time, the presence of Pd and Ag clusters on the surface of SnO2 depresses the gas response to ozone.

2005 ◽  
Vol 15 ◽  
pp. 45-50 ◽  
Author(s):  
G Korotcenkov ◽  
V Tolstoy ◽  
J Schwank ◽  
I Boris

2021 ◽  
Vol 13 (4) ◽  
pp. 724-733
Author(s):  
Ahmad Umar ◽  
Ahmed A. Ibrahim ◽  
Rajesh Kumar ◽  
Hassan Algadi ◽  
Hasan Albargi ◽  
...  

In this paper, star-fruit-shaped CuO microstructures were hydrothermally synthesized and subsequently characterized through different techniques to understand morphological, compositional, structural, crystal, optical and vibrational properties. The formation of star-fruit-shaped structures along with some polygonal and spherical nanostructures was confirmed by FESEM analysis. XRD data and Raman spectrum confirmed the monoclinic tenorite crystalline phase of the CuO with crystal size 17.61 nm. Star-fruit-shaped CuO microstructures were examined for ethanol gas sensing behavior at various operating temperatures and concentrations. The gas response of 135% was observed at the optimal temperature of 225 °C. Due to excellent selectivity, stability and re-usability, the as-fabricated sensor based on star-fruit-shaped CuO micro-structures may be explored for future toxic gas sensor applications.


Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 701 ◽  
Author(s):  
Verena Leitgeb ◽  
Katrin Fladischer ◽  
Frank Hitzel ◽  
Florentyna Sosada-Ludwikowska ◽  
Johanna Krainer ◽  
...  

Integration of metal oxide nanowires in metal oxide gas sensors enables a new generation of gas sensor devices, with increased sensitivity and selectivity. For reproducible and stable performance of next generation sensors, the electric properties of integrated nanowires have to be well understood, since the detection principle of metal oxide gas sensors is based on the change in electrical conductivity during gas exposure. We study two different types of nanowires that show promising properties for gas sensor applications with a Scanning Probe Microscope—Scanning Electron Microscope combination. Electron Beam Induced Current and Kelvin Probe Force Microscopy measurements with a lateral resolution in the nanometer regime are performed. Our work offers new insights into the dependence of the nanowire work function on its composition and size, and into the local interaction between electron beam and semiconductor nanowires.


2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
Ahmad I. Ayesh

The development of gas sensors that are based on metal/metal-oxide nanoclusters has attracted intensive research interest in the last years. Nanoclusters are suitable candidates for gas sensor applications because of their large surface-to-volume ratio that can be utilized for selective and rapid detection of various gaseous species with low-power consuming electronics. Herein, nanoclusters are used as building blocks for the construction of gas sensor where the electrical conductivity of the nanoclusters changes dramatically upon exposure to the target gas. In this review, recent progress in the fabrication of size-selected metallic nanoclusters and their utilization for gas sensor applications is presented. Special focus will be given to the enhancement of the sensing performance through the rational functionalization and utilization of different nanocluster materials.


2015 ◽  
Vol 26 (10) ◽  
pp. 105501 ◽  
Author(s):  
Roman Viter ◽  
Adib Abou Chaaya ◽  
Igor Iatsunskyi ◽  
Grzegorz Nowaczyk ◽  
Kristaps Kovalevskis ◽  
...  

2011 ◽  
Vol 128 (3) ◽  
pp. 433-441 ◽  
Author(s):  
G. Korotcenkov ◽  
L.B. Gulina ◽  
B.K. Cho ◽  
S.H. Han ◽  
V.P. Tolstoy

2012 ◽  
Vol 185 ◽  
pp. 1-4 ◽  
Author(s):  
Tseung Yuen Tseng

The wide-gap semiconductor ZnO with nanostructures such as nanoparticles, nanorods, nanowires has high potential for a variety of sensor applications. This paper reviews the recent developments of ZnO one dimentional nanostructures for future gas sensor applications. Presented first is the factors contributing to the high performances of gas sensors using such nanostructures. Then various fabrication methods of the ZnO nanostructures including vapor phase growth, solution growth, and template-assisted growth are introduced. The characterization and properties of the ZnO nanostructures-based gas sensors are described. The basic mechanisms for explaining the behaviors of the gas sensors are also discussed.


Sign in / Sign up

Export Citation Format

Share Document