scholarly journals Anharmonic oscillations of the single dust particle trapped in a standing striation

2020 ◽  
Vol 1556 ◽  
pp. 012079
Author(s):  
A A Kartasheva ◽  
Yu B Golubovskii ◽  
V Yu Karasev
JETP Letters ◽  
2000 ◽  
Vol 72 (7) ◽  
pp. 364-368 ◽  
Author(s):  
B. A. Klumov ◽  
S. I. Popel ◽  
R. Bingham

2020 ◽  
Vol 39 (1) ◽  
pp. 107-116
Author(s):  
Hongyang Wang ◽  
Kai Dong ◽  
Rong Zhu

AbstractThe reaction mechanism models of dechlorination and [Zn] reclaiming in the roasting steelmaking zincrich dust process are studied. The dust collected from a steelwork contains 63.8% zinc and 3.18% chlorine (mass percent), of which, almost all zinc elements exist in ZnO and ZnCl2 forms, and all the chlorine elements are stored in ZnCl2. When the dust is roasted at above 732∘C in an air atmosphere, the ZnCl2 in the steelmaking zinc-rich dust is volatilized into steam and then oxidized into ZnO. Finding the position where the chemical reaction occurs is the key to determining the reaction mechanisms of dechlorination and [Zn] reclaiming. In this study, two groups of thermal experiments are designed and executed for roasting in different atmosphere environments and at different roasting temperatures. Based on the experiment results, the mechanism model is discussed and built, and the reaction of dechlorination and [Zn] reclaiming is shown to be a multi-step process. Because O2 from the air cannot transmit into the dust particle interior or dust bed effectively, the chemical reaction of [Zn] reclaiming occurs in the external gas environment outside of the dust, where the [Zn] recalcining reaction should be limited by the dynamics of new nucleation of ZnO solids.


2010 ◽  
Vol 108-111 ◽  
pp. 954-959
Author(s):  
Fan Jiang ◽  
Wei Ping Chen ◽  
Zhong Wei Liang

To describe surface shape of the dust particle comprehensively, uses the bidirectional CCD to shoot picture of dust particle, through recognizing the bidirectional particle picture, matching the particle, computing the fractal results of identical particle in two pictures, and integrating two fractal results, obtains the dust particle bidirectional fractal. The results indicated that three fractal dimensions of spherical particle are quite closed, but the three fractal dimensions of flat type particle are significantly different.


2004 ◽  
Vol 93 (8) ◽  
Author(s):  
S. Ratynskaia ◽  
S. Khrapak ◽  
A. Zobnin ◽  
M. H. Thoma ◽  
M. Kretschmer ◽  
...  

1993 ◽  
Vol 76 (4) ◽  
pp. 915???917
Author(s):  
Toshiyuki Okutomi ◽  
Satoshi Watanabe ◽  
Fudo Goto

Author(s):  
Mohammad Davoudabadi ◽  
Beniamino Rovagnati ◽  
Farzad Mashayek ◽  
Giovanni Lapenta
Keyword(s):  

2011 ◽  
Vol 11 (2) ◽  
pp. 723-740 ◽  
Author(s):  
G. Chen ◽  
L. D. Ziemba ◽  
D. A. Chu ◽  
K. L. Thornhill ◽  
G. L. Schuster ◽  
...  

Abstract. As part of the international project entitled "African Monsoon Multidisciplinary Analysis (AMMA)", NAMMA (NASA AMMA) aimed to gain a better understanding of the relationship between the African Easterly Waves (AEWs), the Sahara Air Layer (SAL), and tropical cyclogenesis. The NAMMA airborne field campaign was based out of the Cape Verde Islands during the peak of the hurricane season, i.e., August and September 2006. Multiple Sahara dust layers were sampled during 62 encounters in the eastern portion of the hurricane main development region, covering both the eastern North Atlantic Ocean and the western Saharan desert (i.e., 5–22° N and 10–35° W). The centers of these layers were located at altitudes between 1.5 and 3.3 km and the layer thickness ranged from 0.5 to 3 km. Detailed dust microphysical and optical properties were characterized using a suite of in-situ instruments aboard the NASA DC-8 that included a particle counter, an Ultra-High Sensitivity Aerosol Spectrometer, an Aerodynamic Particle Sizer, a nephelometer, and a Particle Soot Absorption Photometer. The NAAMA sampling inlet has a size cut (i.e., 50% transmission efficiency size) of approximately 4 μm in diameter for dust particles, which limits the representativeness of the NAMMA observational findings. The NAMMA dust observations showed relatively low particle number densities, ranging from 268 to 461 cm−3, but highly elevated volume density with an average at 45 μm3 cm−3. NAMMA dust particle size distributions can be well represented by tri-modal lognormal regressions. The estimated volume median diameter (VMD) is averaged at 2.1 μm with a small range of variation regardless of the vertical and geographical sampling locations. The Ångström Exponent assessments exhibited strong wavelength dependence for absorption but a weak one for scattering. The single scattering albedo was estimated at 0.97 ± 0.02. The imaginary part of the refractive index for Sahara dust was estimated at 0.0022, with a range from 0.0015 to 0.0044. Closure analysis showed that observed scattering coefficients are highly correlated with those calculated from spherical Mie-Theory and observed dust particle size distributions. These values are generally consistent with literature values reported from studies with similar particle sampling size range.


2012 ◽  
Vol 97 (5) ◽  
pp. 55003 ◽  
Author(s):  
E. A. Lisin ◽  
O. S. Vaulina ◽  
O. F. Petrov ◽  
V. E. Fortov

Sign in / Sign up

Export Citation Format

Share Document