scholarly journals A Novel Technique for Optimization of Statistical Decisions under Parametric Uncertainty through Invariant Statistical Embedding and Averaging in Terms of Pivotal Quantities

2020 ◽  
Vol 1603 ◽  
pp. 012022
Author(s):  
N. A. Nechval ◽  
G. Berzins ◽  
K. N. Nechval ◽  
V. Danovics
Author(s):  
N. A. Nechval ◽  
K. N. Nechval

In this chapter, an innovative model for age replacement is proposed. The costs included in the age replacement model are not assumed to be constants. For effective optimization of statistical decisions for age replacement problems under parametric uncertainty, based on a past random sample of lifetimes, the pivotal quantity averaging (PQA) approach is suggested. The PQA approach represents a simple and computationally attractive statistical technique. In this case, the transition from the original problem to the equivalent transformed problem (in terms of pivotal quantities and ancillary factors) is carried out via invariant embedding a sample statistic in the original problem. The approach allows one to eliminate unknown parameters from the problem and to find the better decision rules, which have smaller risk than any of the well-known decision rules. Unlike the Bayesian approach, the proposed approach is independent of the choice of priors. For illustration, numerical examples are given.


Author(s):  
Nicholas A. Nechval

The problem of constructing one-sided exact statistical tolerance limits on the kth order statistic in a future sample of m observations from a distribution of log-location-scale family on the basis of an observed sample from the same distribution is considered. The new technique proposed here emphasizes pivotal quantities relevant for obtaining tolerance factors and is applicable whenever the statistical problem is invariant under a group of transformations that acts transitively on the parameter space. The exact tolerance limits on order statistics associated with sampling from underlying distributions can be found easily and quickly making tables, simulation, Monte Carlo estimated percentiles, special computer programs, and approximation unnecessary. Finally, numerical examples are given, where the tolerance limits obtained by using the known methods are compared with the results obtained through the proposed novel technique, which is illustrated in terms of the extreme-value and two-parameter Weibull distributions.


2011 ◽  
Author(s):  
Nicholas A. Nechval ◽  
Konstantin N. Nechval ◽  
Maris Purgailis ◽  
Gundars Berzins ◽  
Uldis Rozevskis ◽  
...  

2020 ◽  
Vol 19 ◽  

In the present paper, for intelligent constructing efficient (optimal, uniformly non-dominated, unbiased, improved) statistical decisions under parametric uncertainty, a new technique of invariant embedding of sample statistics in a decision criterion and averaging this criterion over pivots’ probability distributions is proposed. This technique represents a simple and computationally attractive statistical method based on the constructive use of the invariance principle in mathematical statistics. Unlike the Bayesian approach, the technique of invariant statistical embedding and averaging via pivotal quantities (ISE&APQ) is independent of the choice of priors and represents a novelty in the theory of statistical decisions. It allows one to eliminate unknown parameters from the problem and to find the efficient statistical decision rules, which often have smaller risk than any of the well-known decision rules. The aim of the present paper is to show how the technique of ISE&APQ may be employed in the particular case of optimization, estimation, or improvement of statistical decisions under parametric uncertainty. To illustrate the proposed technique of ISE&APQ, illustrative examples of intelligent constructing exact statistical tolerance limits for prediction of future outcomes coming from log-location-scale distributions under parametric uncertainty are given


Sign in / Sign up

Export Citation Format

Share Document