scholarly journals Experimental Study on the Influence of Preheated Air and Air-fuel Ratio on the Combustion Temperature of Natural Gas Cupola

2020 ◽  
Vol 1676 ◽  
pp. 012128
Author(s):  
Guangpeng Li ◽  
Hengchao Zhou ◽  
Qi Wang
Energy ◽  
2021 ◽  
Vol 224 ◽  
pp. 120233
Author(s):  
Zhanming Chen ◽  
Jingjing He ◽  
Hao Chen ◽  
Limin Geng ◽  
Peng Zhang

2012 ◽  
Vol 16 (4) ◽  
pp. 1055-1065 ◽  
Author(s):  
Babak Kashir ◽  
Sadegh Tabejamaat ◽  
Mohammadi Baig

Author(s):  
Arnab Roy ◽  
Donald Ferguson ◽  
Todd Sidwell ◽  
Peter Strakey

Operational characteristics of an air breathing Rotating Detonation Combustor (RDC) fueled by natural gas-hydrogen blends are discussed in this paper. Experiments were performed on a 152 mm diameter uncooled RDC with a combustor to inlet area ratio of 0.2 at elevated inlet temperature and combustor pressure while varying the fuel split between natural gas and hydrogen over a range of equivalence ratios. Experimental data from short-duration (∼6sec) tests are presented with an emphasis on identifying detonability limits and exploring detonation stability with the addition of natural gas. Although the nominal combustor used in this experiment was not specifically designed for natural gas-air mixtures, significant advances in understanding conditions necessary for sustaining a stable, continuous detonation wave in a natural gas-hydrogen blended fuel were achieved. Data from the experimental study suggests that at elevated combustor pressures (2–3bar), only a small amount of natural gas added to the hydrogen is needed to alter the detonation wave operational mode. Additional observations indicate that an increase in air inlet temperature (up to 204°C) at atmospheric conditions significantly affects RDC performance by increasing deflagration losses through an increase in the number of combustion (detonation/Deflagration) regions present in the combustor. At higher backpressure levels the RDC exhibited the ability to achieve stable detonation with increasing concentrations of natural gas (with natural gas / hydrogen-air blend). However, losses tend to increase at intermediate air preheat levels (∼120°C). It was observed that combustor pressure had a first order influence on RDC stability in the presence of natural gas. Combining the results from this limited experimental study with our theoretical understanding of detonation wave fundamentals provides a pathway for developing an advanced combustor capable of replacing conventional constant pressure combustors typical of most power generation processes with one that produces a pressure gain.


2013 ◽  
Vol 68 ◽  
pp. 505-511 ◽  
Author(s):  
Helmisyah Ahmad Jalaludin ◽  
Shahrir Abdullah ◽  
Mariyam Jameelah Ghazali ◽  
Bulan Abdullah ◽  
Nik Rosli Abdullah

Sign in / Sign up

Export Citation Format

Share Document