scholarly journals Modeling bubble distribution and heat transfer in polydispersed gas-liquid flow in a backward-facing step

2020 ◽  
Vol 1677 ◽  
pp. 012052
Author(s):  
T V Bogatko ◽  
M A Pakhomov
2012 ◽  
Vol 9 (1) ◽  
pp. 131-135
Author(s):  
M.A. Pakhomov

The paper presents the results of modeling the dynamics of flow, friction and heat transfer in a descending gas-liquid flow in the pipe. The mathematical model is based on the use of the Eulerian description for both phases. The effect of a change in the degree of dispersion of the gas phase at the input, flow rate, initial liquid temperature and its friction and heat transfer rate in a two-phase flow. Addition of the gas phase causes an increase in heat transfer and friction on the wall, and these effects become more noticeable with increasing gas content and bubble diameter.


2018 ◽  
Vol 224 ◽  
pp. 04003
Author(s):  
Sergey Makarov ◽  
Vyacheslav Dement’yev ◽  
Tat’yana Makhneva ◽  
Elena Makarova

A mathematical model of heat transfer at cooling a high-temperature metal billet from structural steel by the flow of a gas-liquid medium in a vertical circular channel is presented. The model has been built with the use of the continuum mechanics approaches and the theory of heat-mass transfer. The non-regular mode of cooling is considered. The results of the numerical parametric investigations of the heat transfer at cooling a metal billet are obtained for a standard regime of thermomechanical strengthening on the basis of the mathematical model of conjugate heat transfer in a two-dimensional nonstationary formulation accounting for the symmetry of the cooling medium flow relative to the longitudinal axis of a cylinder. The control volume approach is used for solving the system of differential equations. The flow field parameters are computed by an algorithm SIMPLE. For the iterative solution of the systems of linear algebraic equations the Gauss-Seidel method with under-relaxation is used. Taking into account evaporation in the liquid, the intensity of the change of the rate of cooling the material of the metal cylindrical billet by the laminar gas-liquid flow is analyzed depending on the time of cooling and the velocity of the gas-liquid flow.


Sign in / Sign up

Export Citation Format

Share Document