eulerian description
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 15)

H-INDEX

13
(FIVE YEARS 2)

Author(s):  
Tomáš Roubíček

The classical Stefan problem, concerning mere heat-transfer during solid-liquid phase transition, is here enhanced towards mechanical effects. The Eulerian description at large displacements is used with convective and Zaremba-Jaumann corotational time derivatives, linearized by exploiting the additive Green-Naghdi’s decomposition in (objective) rates. In particular, the liquid phase is a viscoelastic fluid while creep and rupture of the solid phase is considered in the Jeffreys viscoelastic rheology exploiting the phase-field model, exploiting a concept of slightly (so-called “semi”) compressible materials. The $L^1$-theory for the heat equation is adopted for the Stefan problem relaxed by allowing for kinetic superheating/supercooling effects during the solid-liquid phase transition. A rigorous proof of existence of week solutions is provided for an incomplete melting, exploiting a time-discretisation approximation.


2021 ◽  
Vol 36 (4) ◽  
pp. 197-217
Author(s):  
Vladislav Balashov

Abstract The present paper is devoted to a model describing a two-phase isothermal mixture, in which one of the phases obeys solid-like (namely, elastic) rheology. A fully Eulerian description is considered. To describe the stress–strain behaviour of the solid phase the elastic energy term is added to the Helmholtz free energy. The term depends on Almansi strain tensor. In its turn, the strain tensor is defined as the solution of the corresponding evolutionary equation. Considered model belongs to the phase field family. Formally it describes two-component mixture and uses mass densities of the components as order parameters. A distinctive feature of the considered model is its preliminary regularization according to the quasi-hydrodynamic framework. The dissipativity in total energy is proved when periodic boundary conditions are imposed. A spatial dissipative semi-discrete (continuous in time and discrete in space) scheme based on staggered grids is suggested. The theoretical results remain valid in the absence of the regularization. The results of a numerical study in a 2D setting are presented.


Author(s):  
Arun Kumar ◽  
Poornakanta Handral ◽  
Darshan Bhandari ◽  
Ramsharan Rangarajan

Möbius strips are prototypical examples of ribbon-like structures. Inspecting their shapes and features provides useful insights into the rich mechanics of elastic ribbons. Despite their ubiquity and ease of construction, quantitative experimental measurements of the three-dimensional shapes of Möbius strips are surprisingly non-existent in the literature. We propose two novel stereo vision-based techniques to this end—a marker-based technique that determines a Lagrangian description for the construction of a Möbius strip, and a structured light illumination technique that furnishes an Eulerian description of its shape. Our measurements enable a critical evaluation of the predictive capabilities of mechanical theories proposed to model Möbius strips. We experimentally validate, seemingly for the first time, the developable strip and the Cosserat plate theories for predicting shapes of Möbius strips. Equally significantly, we confirm unambiguous deficiencies in modelling Möbius strips as Kirchhoff rods with slender cross-sections. The experimental techniques proposed and the Cosserat plate model promise to be useful tools for investigating a general class of problems in ribbon mechanics.


Author(s):  
Shaoyuan Pan ◽  
Yuya Yamaguchi ◽  
Anawat Suppasri ◽  
Shuji Moriguchi ◽  
Kenjiro Terada

AbstractThe present study proposes an MPM (material point method)–FEM (finite element method) hybrid analysis method for simulating granular mass–water interaction problems, in which the granular mass causes dynamic motion of the surrounding water. While the MPM is applied to the solid (soil) phase whose motion is suitably represented by Lagrangian description, the FEM is applied to the fluid (water) phase that is adapted for Eulerian description. Also, the phase-field approach is employed to capture the free surface. After the accuracy of the proposed method is tested by comparing the results to some analytical solutions of the consolidation theory, several numerical examples are presented to demonstrate its capability in simulating fluid motions induced by granular mass movements.


2020 ◽  
Vol 906 ◽  
Author(s):  
Peder A. Tyvand ◽  
Camilla Mulstad ◽  
Michael Bestehorn

Abstract


Author(s):  
Giuseppe Pennisi ◽  
Olivier Bauchau

Abstract Dynamics of axially moving continua, such as beams, cables and strings, can be modeled by use of an Arbitrary La-grangian Eulerian (ALE) approach. Within a Finite Element framework, an ALE element is indeed a non-material system, i.e. a mass flow occurs at its boundaries. This article presents the dynamic description of such systems and highlights the peculiarities that arise when applying standard mechanical principles to non-material systems. Starting from D’Alembert’s principle, Hamilton’s principle and Lagrange’s equations for a non-material system are derived and the significance of the additional transport terms discussed. Subsequently, the numerical example of a length-changing beam is illustrated. Energetic considerations show the complex dynamic behavior non-material systems might exhibit.


Atmosphere ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 848
Author(s):  
Angel Vázquez-Patiño ◽  
Lenin Campozano ◽  
Daniela Ballari ◽  
Mario Córdova ◽  
Esteban Samaniego

Unraveling the relationship between humidity, wind, and rainfall is vitally important to understand the dynamics of water vapor transport. In recent years, the use of causal networks to identify causal flows has gained much ground in the field of climatology to provide new insights about physical processes and hypothesize previously unknown ones. In this paper, the concept of a virtual control volume is proposed, which resembles the Eulerian description of a vector field, but is based on causal flows instead. A virtual control surface is used to identify the influence of surrounding climatic processes on the control volume (i.e., the study region). Such an influence is characterized by using a causal inference method that gives information about its direction and strength. The proposed approach was evaluated by inferring and spatially delineating areas of influence of humidity and wind on the rainfall of Ecuador. It was possible to confirm known patterns of influence, such as the influence of the Pacific Ocean on the coast and the influence of the Atlantic Ocean on the Amazon. Moreover, the approach was able to identify plausible new hypotheses, such as the influence of humidity on rainfall in the northern part of the boundary between the Andes and the Amazon, as well as the origin (the Amazon or the tropical Atlantic) and the altitude at which surrounding humidity and wind influence rainfall within the control volume. These hypotheses highlight the ability of the approach to exploit a large amount of scalar data and identify pathways of influence between climatic variables.


Sign in / Sign up

Export Citation Format

Share Document